--- license: apache-2.0 tags: - generated_from_trainer datasets: - elite_voice_project metrics: - wer model-index: - name: whisper-small-ja-elite results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: elite_voice_project type: elite_voice_project config: twitter split: test args: twitter metrics: - name: Wer type: wer value: 4.878048780487805 --- # whisper-small-ja-elite This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the elite_voice_project dataset. It achieves the following results on the evaluation set: - Loss: 0.1502 - Wer: 4.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0004 | 58.0 | 1000 | 0.1129 | 1.8293 | | 0.0 | 117.0 | 2000 | 0.1232 | 1.8293 | | 0.0 | 176.0 | 3000 | 0.1327 | 1.8293 | | 0.0 | 235.0 | 4000 | 0.1401 | 4.8780 | | 0.0 | 294.0 | 5000 | 0.1502 | 4.8780 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2