--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small_finetuned results: [] --- # t5-small_finetuned This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5066 - Rouge1: 0.1851 - Rouge2: 0.0284 - Rougel: 0.148 - Rougelsum: 0.1477 - Gen Len: 18.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.8941 | 1.0 | 100 | 3.5902 | 0.1785 | 0.0256 | 0.1421 | 0.1424 | 18.765 | | 3.6658 | 2.0 | 200 | 3.5176 | 0.1849 | 0.0287 | 0.1481 | 0.1477 | 18.805 | | 3.6187 | 3.0 | 300 | 3.5066 | 0.1851 | 0.0284 | 0.148 | 0.1477 | 18.845 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1