## Evaluation ``` lm_eval --model vllm-vlm --model_args pretrained=llava-hf/llava-1.5-7b-hf --tasks mmmu_val | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |--------------------------------|------:|------|------|------|---|-----:|---|-----:| |mmmu_val | 0|none | |acc |↑ |0.2433|± |0.0141| | - Art and Design | 0|none | |acc |↑ |0.2250|± |0.0384| | - Business | 0|none | |acc |↑ |0.2600|± |0.0358| | - Health and Medicine | 0|none | |acc |↑ |0.3067|± |0.0377| | - Humanities and Social Science| 0|none | |acc |↑ |0.2667|± |0.0403| | - Science | 0|none | |acc |↑ |0.1667|± |0.0308| | - Tech and Engineering | 0|none | |acc |↑ |0.2381|± |0.0284| lm_eval --model vllm-vlm --model_args pretrained=mgoin/llava-1.5-7b-hf-FP8-Dynamic --tasks mmmu_val | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |--------------------------------|------:|------|------|------|---|-----:|---|-----:| |mmmu_val | 0|none | |acc |↑ |0.2433|± |0.0141| | - Art and Design | 0|none | |acc |↑ |0.2250|± |0.0384| | - Business | 0|none | |acc |↑ |0.2600|± |0.0358| | - Health and Medicine | 0|none | |acc |↑ |0.3067|± |0.0377| | - Humanities and Social Science| 0|none | |acc |↑ |0.2667|± |0.0403| | - Science | 0|none | |acc |↑ |0.1667|± |0.0308| | - Tech and Engineering | 0|none | |acc |↑ |0.2381|± |0.0284| ``` ## Creation https://github.com/vllm-project/llm-compressor/pull/185 ```python from transformers import AutoProcessor from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.sparsification import create_sparse_auto_model_class MODEL_ID = "llava-hf/llava-1.5-7b-hf" # Load model. model_class = create_sparse_auto_model_class("LlavaForConditionalGeneration") model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=20) print(processor.decode(output[0])) print("==========================================") ```