test_stage: obcq_modifiers: SmoothQuantModifier: smoothing_strength: 0.5 mappings: [ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"] ] QuantizationModifier: ignore: # These operations don't make sense to quantize - LlamaRotaryEmbedding - LlamaRMSNorm - SiLUActivation # Skip quantizing the BMMs - QuantizableMatMul # Skip quantizing the layers with the most sensitive activations - model.layers.21.mlp.down_proj - model.layers.7.mlp.down_proj - model.layers.2.mlp.down_proj - model.layers.8.self_attn.q_proj - model.layers.8.self_attn.k_proj post_oneshot_calibration: true scheme_overrides: Embedding: input_activations: null weights: num_bits: 8 symmetric: false SparseGPTModifier: sparsity: 0.5 block_size: 128 sequential_update: true quantize: true percdamp: 0.01 mask_structure: "0:0" targets: ["re:model.layers.\\d*$"]