File size: 12,040 Bytes
4917a12 653b617 4917a12 653b617 4917a12 653b617 4917a12 653b617 4917a12 653b617 4917a12 653b617 4917a12 6b7c2dd 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 4917a12 1df50f8 cada640 1df50f8 cada640 1df50f8 cada640 4917a12 1df50f8 cada640 1df50f8 cada640 1df50f8 cada640 4917a12 1df50f8 4917a12 1df50f8 cada640 1df50f8 cada640 1df50f8 cada640 4917a12 1df50f8 cada640 1df50f8 cada640 1df50f8 cada640 4917a12 1df50f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: Qwen/Qwen2.5-VL-72B-Instruct
library_name: transformers
---
# Qwen2.5-VL-72B-Instruct-quantized-FP8-Dynamic
## Model Overview
- **Model Architecture:** Qwen2.5-VL-72B-Instruct
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct).
### Model Optimizations
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
TraceableQwen2_5_VLForConditionalGeneration,
)
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = Qwen/Qwen2.5-VL-72B-Instruct
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["MistralDecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
```
</details>
## Evaluation
The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands:
<details>
<summary>Evaluation Commands</summary>
### Vision Tasks
- vqav2
- docvqa
- mathvista
- mmmu
- chartqa
```
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7
python -m eval.run eval_vllm \
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \
--url http://0.0.0.0:8000 \
--output_dir ~/tmp \
--eval_name <vision_task_name>
```
### Text-based Tasks
#### MMLU
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks mmlu \
--num_fewshot 5 \
--batch_size auto \
--output_path output_dir
```
#### MGSM
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \
--tasks mgsm_cot_native \
--num_fewshot 0 \
--batch_size auto \
--output_path output_dir
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Qwen/Qwen2.5-VL-72B-Instruct</th>
<th>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="6"><b>Vision</b></td>
<td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td>
<td>64.33</td>
<td>66.88</td>
<td>103.96%</td>
</tr>
<tr>
<td>VQAv2 (val)<br><i>vqa_match</i></td>
<td>81.94</td>
<td>81.94</td>
<td>100.00%</td>
</tr>
<tr>
<td>DocVQA (val)<br><i>anls</i></td>
<td>94.71</td>
<td>94.64</td>
<td>99.93%</td>
</tr>
<tr>
<td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td>
<td>88.96</td>
<td>89.04</td>
<td>100.09%</td>
</tr>
<tr>
<td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td>
<td>78.18</td>
<td>77.78</td>
<td>99.49%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>81.62</b></td>
<td><b>81.86</b></td>
<td><b>100.29%</b></td>
</tr>
<tr>
<td rowspan="2"><b>Text</b></td>
<td>MGSM (CoT)</td>
<td>75.45</td>
<td>49.65</td>
<td>65.81%</td>
</tr>
<tr>
<td>MMLU (5-shot)</td>
<td>86.16</td>
<td>86.12</td>
<td>99.95%</td>
</tr>
</tbody>
</table>
## Inference Performance
This model achieves up to 1.79x speedup in single-stream deployment and up to 1.84x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
<details>
<summary>Benchmarking Command</summary>
```
guidellm --model neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server
```
</details>
### Single-stream performance (measured with vLLM version 0.7.2)
<table border="1" class="dataframe">
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
</tr>
<tr>
<th>Hardware</th>
<th>Number of GPUs</th>
<th>Model</th>
<th>Average Cost Reduction</th>
<th>Latency (s)</th>
<th>Queries Per Dollar</th>
<th>Latency (s)th>
<th>Queries Per Dollar</th>
<th>Latency (s)</th>
<th>Queries Per Dollar</th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="3" valign="top">A100</td>
<td>4</td>
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
<td></td>
<td>6.4</td>
<td>78</td>
<td>4.5</td>
<td>111</td>
<td>4.4</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
<td>1.85</td>
<td>7.0</td>
<td>143</td>
<td>4.9</td>
<td>205</td>
<td>4.8</td>
<td>211</td>
</tr>
<tr>
<td>1</td>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
<td>3.33</td>
<td>9.4</td>
<td>213</td>
<td>5.1</td>
<td>396</td>
<td>4.8</td>
<td>420</td>
</tr>
<tr>
<th rowspan="3" valign="top">H100</td>
<td>4</td>
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
<td></td>
<td>4.3</td>
<td>68</td>
<td>3.0</td>
<td>97</td>
<td>2.9</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
<td>1.79</td>
<td>4.6</td>
<td>122</td>
<td>3.3</td>
<td>173</td>
<td>3.2</td>
<td>177</td>
</tr>
<tr>
<td>1</td>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
<td>5.66</td>
<td>4.3</td>
<td>252</td>
<td>4.3</td>
<td>252</td>
<td>1.0</td>
<td>1065</td>
</tr>
</tbody>
</table>
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
<table border="1" class="dataframe">
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
</tr>
<tr>
<th>Hardware</th>
<th>Model</th>
<th>Average Cost Reduction</th>
<th>Maximum throughput (QPS)</th>
<th>Queries Per Dollar</th>
<th>Maximum throughput (QPS)</th>
<th>Queries Per Dollar</th>
<th>Maximum throughput (QPS)</th>
<th>Queries Per Dollar</th>
</tr>
</thead>
<tbody style="text-align: center">
<tr>
<th rowspan="3" valign="top">A100x4</th>
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
<td></td>
<td>0.4</td>
<td>180</td>
<td>1.1</td>
<td>539</td>
<td>1.2</td>
<td>595</td>
</tr>
<tr>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
<td>1.80</td>
<td>1.2</td>
<td>578</td>
<td>4.0</td>
<td>2040</td>
<td>4.6</td>
<td>2266</td>
</tr>
<tr>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
<td>2.75</td>
<td>2.8</td>
<td>1364</td>
<td>12.8</td>
<td>6352</td>
<td>16.4</td>
<td>8148</td>
</tr>
<tr>
<th rowspan="3" valign="top">H100x4</th>
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
<td></td>
<td>0.5</td>
<td>134</td>
<td>1.2</td>
<td>357</td>
<td>1.3</td>
<td>379</td>
</tr>
<tr>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
<td>1.73</td>
<td>1.8</td>
<td>479</td>
<td>4.4</td>
<td>1203</td>
<td>4.8</td>
<td>1296</td>
</tr>
<tr>
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
<td>8.27</td>
<td>13.2</td>
<td>3652</td>
<td>13.2</td>
<td>3652</td>
<td>99.2</td>
<td>27108</td>
</tr>
</tbody>
</table>
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPS: Queries per second.
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |