--- library_name: peft license: apache-2.0 language: - en datasets: - Abirate/english_quotes --- # Quantization 4Bits - 5.02 GB GPU memory usage for inference: ** Vide same fine-tuning for GPT-J-6B: [https://huggingface.co/nlpulse/gpt-j-6b-english_quotes](https://huggingface.co/nlpulse/gpt-j-6b-english_quotes) ``` $ nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | | 65% 74C P2 169W / 170W | 5028MiB / 12288MiB | 97% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ ``` ## Fine-tuning ``` 3 epochs, all dataset samples (split=train), 939 steps 1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 6.85 GB Duration: 1h54min $ nvidia-smi && free -h +-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | |100% 87C P2 168W / 170W | 6854MiB / 12288MiB | 98% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ total used free shared buff/cache available Mem: 77Gi 13Gi 1.1Gi 116Mi 63Gi 63Gi Swap: 37Gi 3.8Gi 34Gi ``` ## Inference ``` import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftConfig, PeftModel model_path = "nlpulse/llama2-7b-chat-english_quotes" # tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True) tokenizer.pad_token = tokenizer.eos_token # quantization config quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # model adapter PEFT LoRA config = PeftConfig.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=quant_config, device_map={"":0}, use_auth_token=True) model = PeftModel.from_pretrained(model, model_path) # inference device = "cuda" text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"] for text in text_list: inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=60) print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Requirements ``` pip install -U bitsandbytes pip install -U git+https://github.com/huggingface/transformers.git pip install -U git+https://github.com/huggingface/peft.git pip install -U accelerate pip install -U datasets pip install -U scipy ``` ## Scripts [https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat) ## References [QLoRa: Fine-Tune a Large Language Model on Your GPU](https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b) [Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0