--- license: apache-2.0 datasets: - Abirate/english_quotes language: - en library_name: transformers --- # Quantization 4Bits - 4.92 GB GPU memory usage for inference: ``` $ nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | | 37% 70C P2 163W / 170W | 4923MiB / 12288MiB | 91% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ ``` ## Fine-tuning ``` 3 epochs, all dataset samples (split=train), 939 steps 1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 7.44 GB Duration: 1h45min $ nvidia-smi && free -h +-----------------------------------------------------------------------------+ | NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A | |100% 89C P2 166W / 170W | 7439MiB / 12288MiB | 93% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ total used free shared buff/cache available Mem: 77Gi 14Gi 23Gi 79Mi 39Gi 62Gi Swap: 37Gi 0B 37Gi ``` ## Inference ``` import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig model_path = "nlpulse/gpt-j-6b-english_quotes" # tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token # quantization config quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # model model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=quant_config, device_map={"":0}) # inference device = "cuda" text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"] for text in text_list: inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=60) print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Requirements ``` pip install -U bitsandbytes pip install -U git+https://github.com/huggingface/transformers.git pip install -U git+https://github.com/huggingface/peft.git pip install -U accelerate pip install -U datasets pip install -U scipy ``` ## Scripts [https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/gptj-6b) ## References [QLoRa: Fine-Tune a Large Language Model on Your GPU](https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b) [Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes)