--- language: fr datasets: - nlpso/m0_fine_tuning_ref_cmbert_io tag: token-classification widget: - text: 'Duflot, loueur de carrosses, r. de Paradis-
 505
 Poissonnière, 22.' example_title: 'Noisy entry #1' - text: 'Duſour el Besnard, march, de bois à bruler,
 quai de la Tournelle, 17. etr. des Fossés-
 SBernard. 11.
 Dí' example_title: 'Noisy entry #2' - text: 'Dufour (Charles), épicier, r. St-Denis
 ☞
 332' example_title: 'Ground-truth entry #1' --- # m0_flat_ner_ref_cmbert_io ## Introduction This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset. ## Dataset Abbreviation|Description -|- O |Outside of a named entity PER |Person or company name ACT |Person or company professional activity TITRE |Distinction LOC |Street name CARDINAL |Street number FT |Geographical feature ## Experiment parameter * Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Dataset : ground-truth * Tagging format : IO * Recognised entities : All (flat entities) ## Load model from the HuggingFace ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("nlpso/m0_flat_ner_ref_cmbert_io") model = AutoModelForTokenClassification.from_pretrained("nlpso/m0_flat_ner_ref_cmbert_io")