--- license: mit --- # Model miniALBERT is a recursive transformer model which uses cross-layer parameter sharing, embedding factorisation, and bottleneck adapters to achieve high parameter efficiency. Since miniALBERT is a compact model, it is trained using a layer-to-layer distillation technique, using the BioClinicalBERT model as the teacher. This model is trained for 3 epochs on the MIMIC-III notes dataset. In terms of architecture, this model uses an embedding dimension of 312, a hidden size of 768, an MLP expansion rate of 4, and a reduction factor of 16 for bottleneck adapters. In general, this model uses 6 recursions and has a unique parameter count of 18 million parameters. # Usage Since miniALBERT uses a unique architecture it can not be loaded using ts.AutoModel for now. To load the model, first, clone the miniALBERT GitHub project, using the below code: ```bash git clone https://github.com/nlpie-research/MiniALBERT.git ``` Then use the ```sys.path.append``` to add the miniALBERT files to your project and then import the miniALBERT modeling file using the below code: ```Python import sys sys.path.append("PATH_TO_CLONED_PROJECT/MiniALBERT/") from minialbert_modeling import MiniAlbertForSequenceClassification, MiniAlbertForTokenClassification ``` Finally, load the model like a regular model in the transformers library using the below code: ```Python # For NER use the below code model = MiniAlbertForTokenClassification.from_pretrained("nlpie/clinical-miniALBERT-312") # For Sequence Classification use the below code model = MiniAlbertForTokenClassification.from_pretrained("nlpie/clinical-miniALBERT-312") ``` In addition, For efficient fine-tuning using the pre-trained bottleneck adapters use the below code: ```Python model.trainAdaptersOnly() ``` # Citation If you use the model, please cite our paper: ```bibtex @article{rohanian2023lightweight, title={Lightweight transformers for clinical natural language processing}, author={Rohanian, Omid and Nouriborji, Mohammadmahdi and Jauncey, Hannah and Kouchaki, Samaneh and Nooralahzadeh, Farhad and Clifton, Lei and Merson, Laura and Clifton, David A and ISARIC Clinical Characterisation Group and others}, journal={Natural Language Engineering}, pages={1--28}, year={2023}, publisher={Cambridge University Press} } ```