--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-mg results: [] --- # whisper-mg This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1375 - Wer: 7.0732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 0.8228 | 35.7143 | 500 | 0.1301 | 8.2927 | | 0.0001 | 71.4286 | 1000 | 0.1337 | 7.3171 | | 0.0 | 107.1429 | 1500 | 0.1352 | 7.0732 | | 0.0 | 142.8571 | 2000 | 0.1368 | 7.0732 | | 0.0 | 178.5714 | 2500 | 0.1375 | 7.0732 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1