--- base_model: HuggingFaceTB/SmolLM-135M datasets: - LDJnr/Capybara inference: parameters: model_file: biggie_groked_int8_q8_0.gguf temperature: 1 license: mit --- ### TINY Frankenstein of [SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M) upped to 0.18b Use this frankenbase for training. Sorry for the mislabelling, the model is a 0.18b 181m parameter, not 0.15. I did not except this repo to blow up and now all the training scripts depend on it. * ## ACKOWLEDGE WORK FROM THIS HF PAGE AND https://huggingface.co/ehartford 's OPTIMIZER ON YOUR FUTURE PAPERS OR I WILL DRAG YOUR ORG ON TWITTER LIKE I DID WITH COHERE LOL (we're cool now btw, visited them :) >>[!TIP]🐧 If you're imatient, get the trained checkpoint file that runs on 1 cpu core: >> >>make sure to install latest llama.cpp first, it's easy on linux & mac: >> >> git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make -j Now for the magic trained finetune that runs at insane speeds: ```verilog wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie_groked_int8_q8_0.gguf ``` The settings are very finicky so be careful with your experimentation ```bash ./llama-cli -fa -b 512 -ctv q8_0 -ctk q8_0 --min-p 0.3 --top-p 0.85 --keep -1 -p "You are a NASA JPL Scientists. Human: I want to bring my cat to mars." -m biggie_groked_int8_q8_0.gguf -co -cnv --in-prefix "<|im_start|>Human:" --reverse-prompt "Human:" -c 1024 -n 700 --temp 1.5 -ngl 0 -t 1 ``` Done via semi-automated continuous merging to figure out the recipe. Model is more coherent. The temperature settings and min p etc need to be adjusted but even at default temp0 it was coherent for first 100 tokens. Amazing option for further training. And this is a merge of the base, not the instruct! ## 🧠 What's Really Going Down Here? We're talking about a convergence of whole bunch of stuff, more papers will be written about this: 1. **Evolutionary Merging**: 2. **BitNet Integration**: 4. **Experimental GrokAdamW Optimizer**: ## Prior work, from last week Credits for optimizer go to [@cognitivecompai](https://github.com/cognitivecomputations/grokadamw) for laying the groundwork with the original GrokAdamW optimizer. ## LETS TRY OUT THE EXPERIMENTAL GROKKED FINETUNE: ```bash wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie_groked_int8_q8_0.gguf ``` Yes we will be talking with a 164mb file that runs at 160 tokens per second on a single cpu core ## you read all of that correctly yes, 1 cpu core 160 tps https://x.com/nisten/status/1819752034305970649 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/nTNISjByBkN7bJZzuOvOw.png) ## 🚀 run it with NO GPU and only one CPU core it with these settings ```bash ./llama-cli -n -1 -fa -b 512 -ctv q8_0 -ctk q8_0 -fa --min-p 0.3 --top-p 0.85 --keep -1 -p "You are a NASA JPL Scientists. Human: I want to bring my cat to mars." -m biggie_groked_int8_q8_0.gguf -co -cnv --in-prefix "<|im_start|>Human:" --reverse-prompt "Human:" -c 1024 -n 512 --temp 1.5 -ngl 0 ``` ## 🏋️ Training Tutorial, MAKE YOUR OWN BIGGIE_SMOlLM Clone the repo like you're stealing code from the future: ```bash git clone https://github.com/nisten/grokadamw cd grokadamw ``` Fire up the training script and watch the magic happen: ```bash python smoltrainer.py ``` ## 💻 Do it from scratch yourself Install the secret sauce (dependencies): ```bash pip install torch transformers datasets tqdm ``` make a file named meow.py , copy paste in this code, and then run it ```python meow.py``` ```python import torch import torch.nn as nn import logging from datasets import load_dataset, Dataset from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling from torch.cuda.amp import autocast import warnings from tqdm import tqdm warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) MODEL_NAME = "nisten/Biggie-SmoLlm-0.15B-Base" MAX_LENGTH = 2048 BATCH_SIZE = 12 LEARNING_RATE = 2e-4 MAX_STEPS = 3000 GRADIENT_ACCUMULATION_STEPS = 2 NUM_WARMUP_STEPS = 30 OUTPUT_DIR = "./capybara_finetuned_results" torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True class GrokAdamW(torch.optim.Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, alpha_init=0.98, lamb=2.0, gamma=0.1, grokking_signal_fns=None, grokking_signal_decay_rate=0.1, gradient_clipping=1.0): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, alpha_init=alpha_init, lamb=lamb, gamma=gamma, grokking_signal_fns=grokking_signal_fns, grokking_signal_decay_rate=grokking_signal_decay_rate, gradient_clipping=gradient_clipping) super(GrokAdamW, self).__init__(params, defaults) @torch.no_grad() def step(self, closure=None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: grokking_signal = self._compute_grokking_signal(group) for i, p in enumerate(group['params']): if p.grad is None: continue grad = p.grad if group['gradient_clipping'] > 0: grad = torch.clamp(grad, -group['gradient_clipping'], group['gradient_clipping']) state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) state['grok_ema'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avg, exp_avg_sq, grok_ema = state['exp_avg'], state['exp_avg_sq'], state['grok_ema'] beta1, beta2 = group['betas'] state['step'] += 1 layer_beta1 = beta1 * (1 - group['gamma'])**i alpha = group['alpha_init'] * torch.exp(torch.tensor(-group['grokking_signal_decay_rate'] * grokking_signal)) grok_ema.mul_(alpha).add_(grad, alpha=1 - alpha) grok_grad = grad + group['lamb'] * grok_ema exp_avg.mul_(layer_beta1).add_(grok_grad, alpha=1 - layer_beta1) exp_avg_sq.mul_(beta2).addcmul_(grok_grad, grok_grad, value=1 - beta2) denom = exp_avg_sq.sqrt().add_(group['eps']) step_size = group['lr'] if group['weight_decay'] != 0: p.data.mul_(1 - group['lr'] * group['weight_decay']) p.addcdiv_(exp_avg, denom, value=-step_size) return loss def _compute_grokking_signal(self, group): if group['grokking_signal_fns'] is None: return 0.0 signals = [] for fn in group['grokking_signal_fns']: try: signal = fn() if signal is not None: signals.append(signal) except Exception as e: logger.warning(f"Error in grokking_signal_fn: {e}. Ignoring this function.") if not signals: return 0.0 return sum(signals) / len(signals) def format_capybara_prompts(examples): texts = [] for conversation in examples['conversation']: formatted_text = "" for turn in conversation: if 'input' in turn: formatted_text += f"Human: {turn['input']}\n\n" if 'output' in turn: formatted_text += f"Assistant: {turn['output']}\n\n" texts.append(formatted_text.strip()) return {"text": texts} class CustomTrainer(Trainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.grokking_signal = 0.0 def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") outputs = model(**inputs) logits = outputs.logits shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) return (loss, outputs) if return_outputs else loss def training_step(self, model, inputs): model.train() inputs = self._prepare_inputs(inputs) with autocast(dtype=torch.bfloat16): loss = self.compute_loss(model, inputs) if self.args.gradient_accumulation_steps > 1: loss = loss / self.args.gradient_accumulation_steps loss.backward() self.grokking_signal = loss.item() return loss.detach() def grokking_signal_fn(): return trainer.grokking_signal def main(): logger.info(f"🚀 Initializing {MODEL_NAME} finetuning with GrokAdamW") try: config = AutoConfig.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16) except Exception as e: logger.error(f"❌ Failed to load model or tokenizer: {str(e)}") return if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id logger.info("📚 Loading Capybara dataset") try: capybara_dataset = load_dataset("LDJnr/Capybara", split="train") capybara_dataset = capybara_dataset.map(format_capybara_prompts, batched=True, remove_columns=capybara_dataset.column_names) except Exception as e: logger.error(f"❌ Failed to load Capybara dataset: {str(e)}") return logger.info(f"📊 Capybara dataset size: {len(capybara_dataset)}") def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=MAX_LENGTH) logger.info("🔢 Tokenizing dataset") tokenized_dataset = capybara_dataset.map(tokenize_function, batched=True, remove_columns=capybara_dataset.column_names) logger.info("🏋️ Setting up the training arguments") training_args = TrainingArguments( output_dir=OUTPUT_DIR, num_train_epochs=3, per_device_train_batch_size=BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, learning_rate=LEARNING_RATE, weight_decay=0.01, bf16=True, logging_steps=10, save_steps=300, save_total_limit=10, dataloader_num_workers=4, warmup_steps=NUM_WARMUP_STEPS, gradient_checkpointing=True, evaluation_strategy="steps", eval_steps=300, max_steps=MAX_STEPS, fp16=False, optim="adamw_hf", lr_scheduler_type="cosine", load_best_model_at_end=True, metric_for_best_model="loss", greater_is_better=False, ) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) optimizer = GrokAdamW( model.parameters(), lr=LEARNING_RATE, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.01, alpha_init=0.98, lamb=2.0, gamma=0.1, grokking_signal_fns=[grokking_signal_fn], grokking_signal_decay_rate=0.1, gradient_clipping=1.0 ) logger.info("🏃‍♂️ Initializing Trainer with GrokAdamW") global trainer trainer = CustomTrainer( model=model, args=training_args, train_dataset=tokenized_dataset, eval_dataset=tokenized_dataset.select(range(min(1000, len(tokenized_dataset)))), data_collator=data_collator, optimizers=(optimizer, None), ) logger.info("🔥 Starting the training with GrokAdamW") try: trainer.train() except Exception as e: logger.error(f"❌ Training failed: {str(e)}") return logger.info("💾 Saving the model") try: trainer.save_model(OUTPUT_DIR) except Exception as e: logger.error(f"❌ Failed to save model: {str(e)}") logger.info("🎉 Finetuning with GrokAdamW completed!") if __name__ == "__main__": main() ``` Now go forth and train, accelerate that code 🚀 ( you'll need about 22Gb of VRAM, change to batch size 1 for 8Gb) Results will appear on ./capybara_finetuned_results Cheers, Nisten Tahiraj rakun.ai Toronto, Canada