--- library_name: transformers tags: - medical language: - en pipeline_tag: visual-question-answering base_model: microsoft/Florence-2-base-ft base_model_relation: finetune --- # Model Description The Florence-2_FT_Lung-Cancer-detection model is a fine-tuned version of the microsoft/Florence-2-base-ft model, tailored specifically for the task of lung cancer detection using lung images. - **Developed by:** Nirusanan - **License:** - **Finetuned from model:** microsoft/Florence-2-base-ft ## How to use ```python ! pip install -q "flash_attn==2.6.3" "timm==1.0.8" "einops==0.8.0" "transformers==4.44.0" ``` ```python device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 ``` ```python model = AutoModelForCausalLM.from_pretrained("nirusanan/Florence-2_FT_Lung-Cancer-detection", torch_dtype=torch_dtype, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("nirusanan/Florence-2_FT_Lung-Cancer-detection", trust_remote_code=True) ``` ```python prompt = "" + "What is the type of lung cancer?" url = "https://www.uab.edu/news/images/ct_scan.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task="", image_size=(image.width, image.height)) print(parsed_answer) ``` ## Evaluation Test Accuracy: 99.17%