{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f15c0477a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696249198125880537, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAUHD267q8/zJW3Pr/DNL4UWUW91jeQvQAAAAAAAAAAiZ4Qv22+Tz/3yKa+8RtMvoywKT1K4X05AAAAAAAAAADzjRo+lASRP8nspT4ynAK/PmJJPupNoT4AAAAAAAAAAIN1BD/mCms/HkXyPlsj677o/og+2W5FPQAAAAAAAAAAABuIPK7f9TlrWYw86VZKPQh0BzxiV1g9AACAPwAAgD8GT8C+je7NPoqU+j6v3q6+QCkevlKkiD4AAAAAAAAAAIcyN7/v/hS+MEj0On1/PDlJBgo+tulbugAAgD8AAIA/xtBLPsOAOzvgwGS8rZvYuXrKnjzflju6AACAPwAAgD+aVPk9sE6QPlVLRj6Wpri+9pOwvR3fgT0AAAAAAAAAAFqV6j1x0Qc8MRcGvNdmdb1oCxg96j5NPQAAAAAAAAAAzSzpvY+if7o6YyC91J9HvWXUbjtXNS8+AACAPwAAAAAgHj++RqNXP/ZEjL3u7ai+uZETvoelkjwAAAAAAAAAAGY2krz01aY+km2nvlZ+zr4SxLy9kUMDvgAAAAAAAAAAjdcGPnt8sbq7aps5oFtgPOwznrxTxwi9AACAPwAAgD9t+Ck/RQNVvqSNiT1DHiy9wZ4XPaYUDb0AAAAAAAAAAI2/7T4EVSy93fziO0QRiLnQT+Y9S49SOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEGlggow22qMAWyUS4GMAXSUR0CKERs3yZrpdX2UKGgGR8A+u1hb4agmaAdLpWgIR0CKGVXz19ORdX2UKGgGR0BO5JkXk5p8aAdN6ANoCEdAih4lK9PDYXV9lChoBkdAE096kZaV2WgHS7BoCEdAiiGQ7T2FnXV9lChoBkfASQ8HY6GQCGgHS6BoCEdAiiKtDc/MXHV9lChoBkdAUXihwl0HQmgHTegDaAhHQIomoyGi5/d1fZQoaAZHwAA90JWvKU5oB0tyaAhHQIopCpcX3xp1fZQoaAZHQEbZypaRp11oB0vBaAhHQIor+W4Vh1F1fZQoaAZHwGuuA8KXv6VoB03LAWgIR0CKN6FINEw4dX2UKGgGR0AqRsnAqNIcaAdLemgIR0CKOES1Vo6CdX2UKGgGR0A24+zdDYywaAdLqGgIR0CKOtYGt6omdX2UKGgGR8AxGERradtmaAdN6ANoCEdAikBzBInSfHV9lChoBkfAaT7KGtZFHGgHTfkBaAhHQIpHsYMvysl1fZQoaAZHQD35bW3BpHtoB0uSaAhHQIpJKK3uuzR1fZQoaAZHQE6tyBkI5YJoB0uHaAhHQIpR3lXA/LV1fZQoaAZHQD0UyAQQL/loB03oA2gIR0CKUeaPS2H+dX2UKGgGR8BgT+AZsKsuaAdL02gIR0CKUnYs/Y8MdX2UKGgGR8Aw1asp5NXYaAdLo2gIR0CKeYauOjqOdX2UKGgGR0BLk2sq8UVSaAdN6ANoCEdAinnqYAsCk3V9lChoBkfAWWdcqvvBrWgHTbwBaAhHQIp8TYoRZlp1fZQoaAZHQBn0ZJkGzKNoB03nAmgIR0CKguogmqo7dX2UKGgGR0AmrHktEofCaAdLdWgIR0CKg0i1y/9HdX2UKGgGR8AxCb+cYqG2aAdLs2gIR0CKhPkRSP2gdX2UKGgGR8AtHcwg1WKeaAdLnmgIR0CKh5jDKoycdX2UKGgGR0BKW89GI9DAaAdN6ANoCEdAiokP1lGwzXV9lChoBkfAKC8fvF3pwGgHS7toCEdAiorikoF3ZHV9lChoBkfAURFMCcPOIWgHTRQBaAhHQIqOEUCaJAN1fZQoaAZHwF0+cBltj1BoB01zAWgIR0CKlCTwDvE1dX2UKGgGR8AzDEfT1CgLaAdLo2gIR0CKlFknTiKjdX2UKGgGR8A05pJPIn0DaAdLqWgIR0CKlsu4gA6udX2UKGgGR8Bqx3oX9BKMaAdNNgFoCEdAipvP3SKFZnV9lChoBkfAU7/wrlNlAmgHS51oCEdAipwtRFZxJnV9lChoBkfAJv/ZmI0qIGgHS79oCEdAipxocJdB0XV9lChoBkdASblEgGKQ72gHTegDaAhHQIqeA7tAs051fZQoaAZHwDQ8kqtozvZoB0vKaAhHQIqfD8YQ8Ol1fZQoaAZHQELhKZDzAetoB0uCaAhHQIql2bkOqed1fZQoaAZHwEnZ1Tzd1uBoB0u2aAhHQIqpr8R+SbJ1fZQoaAZHwAOO5SWJJoVoB0uCaAhHQIqsUrNGEwp1fZQoaAZHP+ww+t8uzyBoB0vUaAhHQIqvoJzDGcZ1fZQoaAZHQD8c4R28qWloB03oA2gIR0CKsiACGN70dX2UKGgGR8BIqRNATqSpaAdL2GgIR0CKvH3EAHVxdX2UKGgGR8BbU/jfek57aAdL3WgIR0CKv/O5avA5dX2UKGgGR0BQe1YhdMTOaAdLm2gIR0CKwIEeyRjjdX2UKGgGR8A82XO4XoC/aAdLqWgIR0CKyCl41P30dX2UKGgGR0A1Xvd/J/5MaAdLpWgIR0CK0D8xbjcVdX2UKGgGR0A+N09yLhrFaAdN6ANoCEdAityamGdqcnV9lChoBkfAF1nQY1pCbGgHS4RoCEdAit/1y/9Hc3V9lChoBkfAVSQ90Rvm5mgHS8RoCEdAit/2YWtU43V9lChoBkdATq8rqdH2AWgHTegDaAhHQIrh4hOgxrV1fZQoaAZHwBnpfMOf/WFoB0vQaAhHQIrkVFKCg9N1fZQoaAZHwGCWXgccU/RoB0vNaAhHQIrkVDtw71Z1fZQoaAZHQBDvdRBNVR1oB0ugaAhHQIrpUBKcurZ1fZQoaAZHQFU1i5uqFRJoB03oA2gIR0CK8OWFev6kdX2UKGgGR8BnqPXGwRoRaAdNTQJoCEdAivgzI3irDXV9lChoBkdANpDsUqQRw2gHS7VoCEdAivj3MyJsPHV9lChoBkfAXVlbnoxHoWgHS89oCEdAiwEHEVFhHHV9lChoBkdAM8o1xbSql2gHTegDaAhHQIsF+nXNC7d1fZQoaAZHwFN2cZ9/jKhoB0vNaAhHQIsGYcghbGF1fZQoaAZHwE5Cd3B55Z9oB005AWgIR0CLK5UhmoR7dX2UKGgGR8AnJVinYQJ5aAdLrGgIR0CLK/TiKiwjdX2UKGgGR0BYy7LhaTwEaAdN6ANoCEdAiyxeh4+r2nV9lChoBkdAM4S/oJRfnmgHS5loCEdAizNBMrVe8nV9lChoBkdATwfn8sMAm2gHTegDaAhHQIs2k1fmcON1fZQoaAZHQC0QfW+XZ5BoB0uHaAhHQItDnQrtmcx1fZQoaAZHQDgkACGN70FoB0ueaAhHQItEbm6oVEd1fZQoaAZHQDX1mPHT7VJoB0ufaAhHQItH3nEETxp1fZQoaAZHQEjnfixVyWBoB0ufaAhHQItIsvwmVqx1fZQoaAZHQE/NNUOuq3poB03oA2gIR0CLSjKEFnqWdX2UKGgGR0Amv8hs67ulaAdLs2gIR0CLVmhX8wYcdX2UKGgGR0AwfRJmNBGAaAdLgmgIR0CLWd6JIlMRdX2UKGgGR8Ba1x1LamGeaAdNLwFoCEdAi1wig9Net3V9lChoBkfAMH5M+NcW02gHS49oCEdAi1xGvOhTO3V9lChoBkdAPvdS2phnamgHS55oCEdAi2CeN96Tn3V9lChoBkfAEU1OTJQtSWgHTegDaAhHQIthREnb7CV1fZQoaAZHwD1ewHJLdvdoB0tqaAhHQItkj0J4SpR1fZQoaAZHwCVsEJSiudRoB0vMaAhHQItoEwJw84h1fZQoaAZHQF7iLamGdqdoB03oA2gIR0CLbtuAqd6LdX2UKGgGR8AgnNyHVPN3aAdLj2gIR0CLbzk6tDD1dX2UKGgGR0BW0qziS7oTaAdN6ANoCEdAi3FPPkaMrHV9lChoBkfAOHdbkfcN6WgHS7NoCEdAi3HqLjxTbXV9lChoBkfAQz6E6DGtIWgHS3loCEdAi3fJEx7AtXV9lChoBkdACrE6T4cm0GgHS8BoCEdAi3oayKNyYHV9lChoBkdALFVS4vvjO2gHS81oCEdAi38jjrAxjHV9lChoBkfAQnl6qsEJSmgHS4VoCEdAi3/1aGHpKXV9lChoBkfAPQlu3trsSmgHS5BoCEdAi44cN6PbPHV9lChoBkc/6VxffGdZq2gHS/JoCEdAi48xSP2f03V9lChoBkdAS25PCVKPGWgHTegDaAhHQIuWcP6KtPp1fZQoaAZHwFMNeVs1sLxoB0vcaAhHQIuXYSg5BC51fZQoaAZHQELflK9PDYRoB03oA2gIR0CLmHg7YChfdX2UKGgGR0AL1M7EHdGiaAdN6ANoCEdAi5soScslLXV9lChoBkfAaKWUCaJAMWgHS/1oCEdAi6RSIYWLxnV9lChoBkdAOWltwaR6nmgHS7FoCEdAi6nX8GcFyXV9lChoBkfAQu7ROUMXrWgHS4doCEdAi60uk1uR93V9lChoBkfAR1ss4DLbH2gHS55oCEdAi7Nj8k2P1nV9lChoBkdAVtp9KEnLJWgHTegDaAhHQIu0WtGNJe51fZQoaAZHQDPKblRxcVxoB0u9aAhHQIu3B6rvLHN1fZQoaAZHQC8vaDf3vhJoB0vMaAhHQIvAOHrQgLZ1fZQoaAZHQFWpNL127nRoB03oA2gIR0CLwOB19v0idX2UKGgGR8BA56JqIrOJaAdLsWgIR0CLxwwUxmCidX2UKGgGR7/W+qzZ6D5CaAdLgmgIR0CLzDfgrH2idWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}