--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-subreddit_classification results: [] --- # distilbert-base-uncased-finetuned-subreddit_classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2958 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4142 | 0.6 | 30 | 1.2653 | 0.45 | | 0.9856 | 1.2 | 60 | 0.7754 | 0.87 | | 0.5056 | 1.8 | 90 | 0.4413 | 0.9 | | 0.2248 | 2.4 | 120 | 0.2984 | 0.92 | | 0.1352 | 3.0 | 150 | 0.3265 | 0.89 | | 0.0856 | 3.6 | 180 | 0.2958 | 0.91 | | 0.0715 | 4.2 | 210 | 0.2611 | 0.92 | | 0.0615 | 4.8 | 240 | 0.2738 | 0.93 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.13.0+cpu - Datasets 2.8.0 - Tokenizers 0.12.1