--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: PolicyBERTa-7d results: [] --- # PolicyBERTa-7d This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Accuracy: 0.7059 - F1-micro: 0.7059 - F1-macro: 0.6683 - F1-weighted: 0.7033 - Precision: 0.7059 - Recall: 0.7059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.9154 | 1.0 | 1812 | 0.8984 | 0.6785 | 0.6785 | 0.6383 | 0.6772 | 0.6785 | 0.6785 | | 0.8374 | 2.0 | 3624 | 0.8569 | 0.6957 | 0.6957 | 0.6529 | 0.6914 | 0.6957 | 0.6957 | | 0.7053 | 3.0 | 5436 | 0.8582 | 0.7019 | 0.7019 | 0.6594 | 0.6967 | 0.7019 | 0.7019 | | 0.7178 | 4.0 | 7248 | 0.8488 | 0.7030 | 0.7030 | 0.6662 | 0.7011 | 0.7030 | 0.7030 | | 0.6688 | 5.0 | 9060 | 0.8549 | 0.7059 | 0.7059 | 0.6683 | 0.7033 | 0.7059 | 0.7059 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3