PolicyBERTa-7d / README.md
niksmer's picture
update model card README.md
72e5bba
|
raw
history blame
2.11 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: PolicyBERTa-7d
    results: []

PolicyBERTa-7d

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8549
  • Accuracy: 0.7059
  • F1-micro: 0.7059
  • F1-macro: 0.6683
  • F1-weighted: 0.7033
  • Precision: 0.7059
  • Recall: 0.7059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-micro F1-macro F1-weighted Precision Recall
0.9154 1.0 1812 0.8984 0.6785 0.6785 0.6383 0.6772 0.6785 0.6785
0.8374 2.0 3624 0.8569 0.6957 0.6957 0.6529 0.6914 0.6957 0.6957
0.7053 3.0 5436 0.8582 0.7019 0.7019 0.6594 0.6967 0.7019 0.7019
0.7178 4.0 7248 0.8488 0.7030 0.7030 0.6662 0.7011 0.7030 0.7030
0.6688 5.0 9060 0.8549 0.7059 0.7059 0.6683 0.7033 0.7059 0.7059

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.8.0
  • Tokenizers 0.10.3