--- ### **`weights/PenCL/README.md`** ```markdown # PenCL Pre-trained Weights This folder contains the pre-trained weights for the **PenCL** model (Stage 1 of BioM3). The PenCL model aligns protein sequences and text descriptions to compute joint latent embeddings. --- ## **Downloading Pre-trained Weights** To download the **PenCL epoch 20 pre-trained weights** as a `.bin` file from Google Drive, use the following command: ```bash pip install gdown gdown --id 1Lup7Xqwa1NjJpoM2uvvBAdghoM-fecEj -O BioM3_PenCL_epoch20.bin ``` --- ## **Usage** Once available, the pre-trained weights can be loaded as follows: ```python import json import torch from argparse import Namespace import Stage1_source.model as mod # Step 1: Load JSON Configuration def load_json_config(json_path): """ Load a JSON configuration file and return it as a dictionary. """ with open(json_path, "r") as f: config = json.load(f) return config # Step 2: Convert JSON Dictionary to Namespace def convert_to_namespace(config_dict): """ Recursively convert a dictionary to an argparse Namespace. """ for key, value in config_dict.items(): if isinstance(value, dict): config_dict[key] = convert_to_namespace(value) return Namespace(**config_dict) if __name__ == '__main__': # Path to configuration and weights config_path = "stage1_config.json" model_weights_path = "weights/PenCL/BioM3_PenCL_epoch20.bin" # Load Configuration print("Loading configuration...") config_dict = load_json_config(config_path) config_args = convert_to_namespace(config_dict) # Load Model print("Loading pre-trained model weights...") model = mod.pfam_PEN_CL(args=config_args) # Initialize the model with arguments model.load_state_dict(torch.load(model_weights_path, map_location="cpu")) model.eval() print("Model loaded successfully with weights!") ```