--- language: - uk license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Ukrainian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: uk split: None args: 'config: uk, split: test' metrics: - name: Wer type: wer value: 20.106509860483175 --- # whisper-medium-uk This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3673 - Wer: 20.1065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1947 | 0.94 | 1000 | 0.2269 | 22.7263 | | 0.1034 | 1.89 | 2000 | 0.2102 | 20.6058 | | 0.0572 | 2.83 | 3000 | 0.2192 | 20.3908 | | 0.0261 | 3.77 | 4000 | 0.2483 | 21.0204 | | 0.0112 | 4.72 | 5000 | 0.2758 | 21.1480 | | 0.0058 | 5.66 | 6000 | 0.3166 | 20.3270 | | 0.0026 | 6.6 | 7000 | 0.3268 | 20.5877 | | 0.0017 | 7.55 | 8000 | 0.3483 | 20.0455 | | 0.0006 | 8.49 | 9000 | 0.3635 | 20.0996 | | 0.0005 | 9.43 | 10000 | 0.3673 | 20.1065 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2