--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - nielsr/XFUN model-index: - name: layoutxlm-finetuned-xfund-fr results: [] inference: false --- # layoutxlm-finetuned-xfund-fr This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the [XFUND](https://github.com/doc-analysis/XFUND) dataset (French split). ## Model usage Note that this model requires Tesseract, French package, in order to perform inference. You can install it using `!sudo apt-get install tesseract-ocr-fra`. Here's how to use this model: ``` from transformers import AutoProcessor, AutoModelForTokenClassification import torch from PIL import Image processor = AutoProcessor.from_pretrained("nielsr/layoutxlm-finetuned-xfund-fr") model = AutoModelForTokenClassification.from_pretrained(nielsr/layoutxlm-finetuned-xfund-fr") # assuming you have a French document, turned into an image image = Image("...").convert("RGB") # prepare for the model encoding = processor(image, return_offsets_mapping=True, padding="max_length", max_length=512, truncation=True, return_tensors="pt") with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits predictions = logits.argmax(-1) ``` ## Intended uses & limitations This model can be used for NER on French scanned documents. It can recognize 4 categories: "question", "answer", "header" and "other". ## Training and evaluation data This checkpoint used the French portion of the multilingual [XFUND](https://github.com/doc-analysis/XFUND) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1