nidek commited on
Commit
c449f42
1 Parent(s): 79dc7ad

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1362.63 +/- 141.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb643363e60b1342de9d58705b6019fe6c656a6729be5c2b38221edd75f222b0
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd43023d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd43023dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd43023e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd43023ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efd43023f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efd43028040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd430280d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd43028160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efd430281f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd43028280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd43028310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd430283a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7efd4301ce70>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674420601964606449,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHa2DT/QUaa/iVEawMgO0j5TXbW/HPrGvt49nL98cVU/+YX1v7nTj8C+zla/LlE5PuRtIr7qvHvAnHIZvef1UT948rc/qF44vfcTtb9EIe2/t2yYP1lQg75xSPQ/x4/FP9FpyL81+Jg+eWHdv5x/fz+frc0/xbuMvxlYPL9yDg0/xculv7+bST4FANK/kii8v7eTaT8WhzY/5GQ5Pn5D1r5vQrg/3KymvNcOHj8oEZ2/QnDUvxRUlTsV7BPAe5hbvUq0vT/mooW+S4KZvPSSi7+IgCM/NfiYPjcEFD9SQIC/M6+KPul32z3RmSE/uXpqP7JTMMA+awo/nXrevuf4/D70vgTADE1lP1u1zL4nmcw/RvZePsSnqL+C0V++0TUHQNChuD8wt5e97oI3v8/zBMAf26s/fErXPqCWBT9VPNs/0WnIvzX4mD55Yd2/nH9/PzgZhT/0xrK9FRYHP2xg8T8Lr7i/otGlPmzanr/X4nu/cqqRP9vjqLwrdra+Qv2ivqOLsD+BvpW+F84JP94npb8G6QO/i2SPv9vwmb/+Rtk++2a6P2IfTL7EdAe/0Q4dwIiAIz81+Jg+NwQUP1JAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/o2s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeOBvQAAAACKt9+/AAAAAJ4uQbwAAAAAM7vePwAAAABHQVW8AAAAAFyT+z8AAAAAaNfqvQAAAABTQum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EtOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/MQj0AAAAARrv6vwAAAAC1ANA9AAAAAApg4j8AAAAAWC/SvQAAAADF9v0/AAAAAKNOcbwAAAAAKSvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTDPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSHrQ9AAAAAL3Q4L8AAAAAl+MoPQAAAACVuds/AAAAAN1Yyb0AAAAAmAP3PwAAAAB2qLi8AAAAAJvh578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUHm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYAXGPQAAAACQHwHAAAAAAHN88r0AAAAA/Jn+PwAAAAAI7Yq9AAAAADnnAEAAAAAAfY/2vQAAAABThOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI71bBl+VkeMAWyUTegDjAF0lEdApywuw9q1xHV9lChoBkdAjFGO5J9RaWgHTegDaAhHQKct4m4RVZN1fZQoaAZHQIZAPavicXpoB03oA2gIR0CnL6S3solVdX2UKGgGR0CN3LiBGx2TaAdN6ANoCEdApzORkCmuT3V9lChoBkdAiTfKVyFPBWgHTegDaAhHQKc4HIBBAwB1fZQoaAZHQHDL1x82Ji1oB03oA2gIR0CnOb7KA8SxdX2UKGgGR0CIAretSydGaAdN6ANoCEdApzuHBpHqeXV9lChoBkdAkkoAt4A0bmgHTegDaAhHQKc/gLzf7791fZQoaAZHQI4Kfwy6+WZoB03oA2gIR0CnRAzImw7ldX2UKGgGR0CX8iT3IuGsaAdN6ANoCEdAp0XWtjkMkXV9lChoBkdAlCpOLvTgEWgHTegDaAhHQKdHm1ivxH51fZQoaAZHQJELI0ZWJadoB03oA2gIR0CnS4WwmmcfdX2UKGgGR0CU0wiaAnUlaAdN6ANoCEdAp1Aq7/XGwXV9lChoBkdAluSKySmqHWgHTegDaAhHQKdSLjurp7l1fZQoaAZHQJSpyJj2BatoB03oA2gIR0CnVDhr30wrdX2UKGgGR0CWl7BAOavzaAdN6ANoCEdAp1jXGEPDpHV9lChoBkdAkXr6Mm4RVmgHTegDaAhHQKdd3UVBUrF1fZQoaAZHQJZJAiA2AG1oB03oA2gIR0CnX5ysKb8WdX2UKGgGR0CY/+jdHlOoaAdN6ANoCEdAp2FumaYu03V9lChoBkdAlxwUfcN6PmgHTegDaAhHQKdlbCFbmlt1fZQoaAZHQJbNAiX6ZYxoB03oA2gIR0CnaiGITGo8dX2UKGgGR0CXepBjnV5KaAdN6ANoCEdAp2vdQ2uPm3V9lChoBkdAmkgwPiDM/2gHTegDaAhHQKdtvGKhtch1fZQoaAZHQJReCGTLW7RoB03oA2gIR0CnchB7NSqEdX2UKGgGR0CWS1VJcxCZaAdN6ANoCEdAp3aueg+Ql3V9lChoBkdAlqVVxn3+M2gHTegDaAhHQKd4WYDTz/Z1fZQoaAZHQJb8gSpR4yJoB03oA2gIR0Cnei/kmx+sdX2UKGgGR0CV6AohIOH4aAdN6ANoCEdAp36FBnjABXV9lChoBkdAmNYSEYfnwGgHTegDaAhHQKeDFLzwtrd1fZQoaAZHQJWTVl2/zrhoB03oA2gIR0CnhLxradtmdX2UKGgGR0CYAGcbzbvgaAdN6ANoCEdAp4aW7z06HXV9lChoBkdAmcxw1zhgmmgHTegDaAhHQKeKp8rqdH51fZQoaAZHQJeR/3ztkWhoB03oA2gIR0Cnj0DmSyMUdX2UKGgGR0CW21LW7OE/aAdN6ANoCEdAp5EIIv8IiXV9lChoBkdAmYN5lrdnCmgHTegDaAhHQKeS7MWXTmZ1fZQoaAZHQJeOvV6NVBFoB03oA2gIR0Cnl1YcWCVbdX2UKGgGR0B7JgipvP1MaAdN6ANoCEdAp5xwgieNDXV9lChoBkdAmRmbVz6rNmgHTegDaAhHQKeeNvBJqZd1fZQoaAZHQJS6hLamGdtoB03oA2gIR0CnoB4yfthNdX2UKGgGR0CYYuqfvnbJaAdN6ANoCEdAp6R+K2rn1XV9lChoBkdAlALmNipeeGgHTegDaAhHQKepaL0Bfa91fZQoaAZHQJLhq+GoJiRoB03oA2gIR0Cnq031zySWdX2UKGgGR0CQlA3DvVmSaAdN6ANoCEdAp60wEt/WlXV9lChoBkdAgAnXPJJXhmgHTegDaAhHQKexeMcZLqV1fZQoaAZHQJSKF0fYBeZoB03oA2gIR0CntkFqagEmdX2UKGgGR0CN7cbdadMCaAdN6ANoCEdAp7gPTRYzSHV9lChoBkdAkOuaIWP91mgHTegDaAhHQKe6IZydWhh1fZQoaAZHQJQ5yvNeMQ5oB03oA2gIR0CnvhXVkMCtdX2UKGgGR0CTJcXqqwQlaAdN6ANoCEdAp8KR0uDjBHV9lChoBkdAk2Q9rCWNWGgHTegDaAhHQKfENwKjSG91fZQoaAZHQJH9cEidJ8RoB03oA2gIR0CnxgQPAfuDdX2UKGgGR0CRbSaFEiMYaAdN6ANoCEdAp8n0Vi4J/3V9lChoBkdAjnxTsQd0aWgHTegDaAhHQKfOj6cAiml1fZQoaAZHQJJNfSx7iQ1oB03oA2gIR0Cn0EjSgGr0dX2UKGgGR0CUYL/h2nsLaAdN6ANoCEdAp9IurZJ04nV9lChoBkdAkqhCuQp4KWgHTegDaAhHQKfWRGKhtch1fZQoaAZHQJJlP/yXlbNoB03oA2gIR0Cn2t508vEkdX2UKGgGR0CMatVf/m1ZaAdN6ANoCEdAp9yTIBBAwHV9lChoBkdAigXmG/N7jWgHTegDaAhHQKfeYAMlTm51fZQoaAZHQIq4SMUAT7FoB03oA2gIR0Cn4mMrVe8gdX2UKGgGR0CR9JPI4lyBaAdN6ANoCEdAp+b3/3nIQ3V9lChoBkdAkx9I73fygGgHTegDaAhHQKfosr8R+Sd1fZQoaAZHQIzagfCAMDxoB03oA2gIR0Cn6oJXIU8FdX2UKGgGR0CR7eBuXNTtaAdN6ANoCEdAp+58otthu3V9lChoBkdAjjEM3ZPEbmgHTdoDaAhHQKfy2s7uDz11fZQoaAZHQJBQ7ujRD1JoB03oA2gIR0Cn9MImgJ1JdX2UKGgGR0CRZf+4LCvYaAdN6ANoCEdAp/aWqebut3V9lChoBkdAlkV5aq0dBGgHTegDaAhHQKf6jiJfpll1fZQoaAZHQJXRSHpKSPloB03oA2gIR0Cn/yVbqyGBdX2UKGgGR0CVKXnpB5X2aAdN6ANoCEdAqAD3DpC8e3V9lChoBkdAlLiu4oZydWgHTegDaAhHQKgCwOFxn4B1fZQoaAZHQJGn8UsWfshoB03oA2gIR0CoBrEZzgdfdX2UKGgGR0CQVVMfzSThaAdN6ANoCEdAqAsJVjqfOHV9lChoBkdAk6GkLUkOZ2gHTegDaAhHQKgM6rRSgoR1fZQoaAZHQJILm0LMLWtoB03oA2gIR0CoDridjG1hdX2UKGgGR0CSiD4SYgJUaAdN6ANoCEdAqBLa1Cw8n3V9lChoBkdAlHVFvqC6H2gHTegDaAhHQKgXLrGipNt1fZQoaAZHQJTt1ZuAI6doB03oA2gIR0CoGRBxYJVsdX2UKGgGR0COK5yo4uK5aAdN6ANoCEdAqBruPLgXM3V9lChoBkdAjqYqWcBltmgHTegDaAhHQKge+3LFGXp1fZQoaAZHQJByahcqvvBoB03oA2gIR0CoI1duP3i8dX2UKGgGR0CTUEXtjTa1aAdN6ANoCEdAqCU0w8GLUHV9lChoBkdAjqeBf0Eov2gHTegDaAhHQKgnB0SRKYl1fZQoaAZHQIi1dLeyiVVoB03oA2gIR0CoKvDMmnfmdX2UKGgGR0CRmeXw9aEBaAdN6ANoCEdAqC9pc3VConV9lChoBkdAkfgeC5EtumgHTegDaAhHQKgxSO/cnE51fZQoaAZHQI0ojErGza9oB03oA2gIR0CoMzL2HtWudX2UKGgGR0CNBVAZbY9QaAdN6ANoCEdAqDczqKP4mHV9lChoBkdAkBZ93Sro4mgHTegDaAhHQKg7kydFvyd1fZQoaAZHQIam8Bp5/spoB03oA2gIR0CoPX8Co0hvdX2UKGgGR0CSYcJqqOtGaAdN6ANoCEdAqD9MDhcZ+HV9lChoBkdAk7JXMY/FBWgHTegDaAhHQKhDPjYI0Il1fZQoaAZHQJR4FCMPz4FoB03oA2gIR0CoR6xlg+hXdX2UKGgGR0CRv2fK6nR+aAdN6ANoCEdAqEmVUp/gBXV9lChoBkdAiBnLgflp5GgHTegDaAhHQKhLWQZn+Q51fZQoaAZHQIEDpbMX7+FoB024AmgIR0CoS7OnVG1AdX2UKGgGR0CQjqk5IYm+aAdN6ANoCEdAqFQhNqQA/HV9lChoBkdAlLR24RVZLmgHTegDaAhHQKhWB+xW1dB1fZQoaAZHQJPf9HYpUgloB03oA2gIR0CoV9M2vStvdX2UKGgGR0CUss77Kq4paAdN6ANoCEdAqFglZeRgZ3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb959ad44fb80d305c9441836d7c0489448b97ad78cf4095f0c26d91660fe290
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b01328fcf297a8d9c6f6b44418926913ec67566079621541a1d3584acdfd5e9
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd43023d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd43023dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd43023e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd43023ee0>", "_build": "<function ActorCriticPolicy._build at 0x7efd43023f70>", "forward": "<function ActorCriticPolicy.forward at 0x7efd43028040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd430280d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd43028160>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd430281f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd43028280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd43028310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd430283a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd4301ce70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674420601964606449, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHa2DT/QUaa/iVEawMgO0j5TXbW/HPrGvt49nL98cVU/+YX1v7nTj8C+zla/LlE5PuRtIr7qvHvAnHIZvef1UT948rc/qF44vfcTtb9EIe2/t2yYP1lQg75xSPQ/x4/FP9FpyL81+Jg+eWHdv5x/fz+frc0/xbuMvxlYPL9yDg0/xculv7+bST4FANK/kii8v7eTaT8WhzY/5GQ5Pn5D1r5vQrg/3KymvNcOHj8oEZ2/QnDUvxRUlTsV7BPAe5hbvUq0vT/mooW+S4KZvPSSi7+IgCM/NfiYPjcEFD9SQIC/M6+KPul32z3RmSE/uXpqP7JTMMA+awo/nXrevuf4/D70vgTADE1lP1u1zL4nmcw/RvZePsSnqL+C0V++0TUHQNChuD8wt5e97oI3v8/zBMAf26s/fErXPqCWBT9VPNs/0WnIvzX4mD55Yd2/nH9/PzgZhT/0xrK9FRYHP2xg8T8Lr7i/otGlPmzanr/X4nu/cqqRP9vjqLwrdra+Qv2ivqOLsD+BvpW+F84JP94npb8G6QO/i2SPv9vwmb/+Rtk++2a6P2IfTL7EdAe/0Q4dwIiAIz81+Jg+NwQUP1JAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/o2s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeOBvQAAAACKt9+/AAAAAJ4uQbwAAAAAM7vePwAAAABHQVW8AAAAAFyT+z8AAAAAaNfqvQAAAABTQum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EtOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/MQj0AAAAARrv6vwAAAAC1ANA9AAAAAApg4j8AAAAAWC/SvQAAAADF9v0/AAAAAKNOcbwAAAAAKSvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTDPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSHrQ9AAAAAL3Q4L8AAAAAl+MoPQAAAACVuds/AAAAAN1Yyb0AAAAAmAP3PwAAAAB2qLi8AAAAAJvh578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUHm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYAXGPQAAAACQHwHAAAAAAHN88r0AAAAA/Jn+PwAAAAAI7Yq9AAAAADnnAEAAAAAAfY/2vQAAAABThOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI71bBl+VkeMAWyUTegDjAF0lEdApywuw9q1xHV9lChoBkdAjFGO5J9RaWgHTegDaAhHQKct4m4RVZN1fZQoaAZHQIZAPavicXpoB03oA2gIR0CnL6S3solVdX2UKGgGR0CN3LiBGx2TaAdN6ANoCEdApzORkCmuT3V9lChoBkdAiTfKVyFPBWgHTegDaAhHQKc4HIBBAwB1fZQoaAZHQHDL1x82Ji1oB03oA2gIR0CnOb7KA8SxdX2UKGgGR0CIAretSydGaAdN6ANoCEdApzuHBpHqeXV9lChoBkdAkkoAt4A0bmgHTegDaAhHQKc/gLzf7791fZQoaAZHQI4Kfwy6+WZoB03oA2gIR0CnRAzImw7ldX2UKGgGR0CX8iT3IuGsaAdN6ANoCEdAp0XWtjkMkXV9lChoBkdAlCpOLvTgEWgHTegDaAhHQKdHm1ivxH51fZQoaAZHQJELI0ZWJadoB03oA2gIR0CnS4WwmmcfdX2UKGgGR0CU0wiaAnUlaAdN6ANoCEdAp1Aq7/XGwXV9lChoBkdAluSKySmqHWgHTegDaAhHQKdSLjurp7l1fZQoaAZHQJSpyJj2BatoB03oA2gIR0CnVDhr30wrdX2UKGgGR0CWl7BAOavzaAdN6ANoCEdAp1jXGEPDpHV9lChoBkdAkXr6Mm4RVmgHTegDaAhHQKdd3UVBUrF1fZQoaAZHQJZJAiA2AG1oB03oA2gIR0CnX5ysKb8WdX2UKGgGR0CY/+jdHlOoaAdN6ANoCEdAp2FumaYu03V9lChoBkdAlxwUfcN6PmgHTegDaAhHQKdlbCFbmlt1fZQoaAZHQJbNAiX6ZYxoB03oA2gIR0CnaiGITGo8dX2UKGgGR0CXepBjnV5KaAdN6ANoCEdAp2vdQ2uPm3V9lChoBkdAmkgwPiDM/2gHTegDaAhHQKdtvGKhtch1fZQoaAZHQJReCGTLW7RoB03oA2gIR0CnchB7NSqEdX2UKGgGR0CWS1VJcxCZaAdN6ANoCEdAp3aueg+Ql3V9lChoBkdAlqVVxn3+M2gHTegDaAhHQKd4WYDTz/Z1fZQoaAZHQJb8gSpR4yJoB03oA2gIR0Cnei/kmx+sdX2UKGgGR0CV6AohIOH4aAdN6ANoCEdAp36FBnjABXV9lChoBkdAmNYSEYfnwGgHTegDaAhHQKeDFLzwtrd1fZQoaAZHQJWTVl2/zrhoB03oA2gIR0CnhLxradtmdX2UKGgGR0CYAGcbzbvgaAdN6ANoCEdAp4aW7z06HXV9lChoBkdAmcxw1zhgmmgHTegDaAhHQKeKp8rqdH51fZQoaAZHQJeR/3ztkWhoB03oA2gIR0Cnj0DmSyMUdX2UKGgGR0CW21LW7OE/aAdN6ANoCEdAp5EIIv8IiXV9lChoBkdAmYN5lrdnCmgHTegDaAhHQKeS7MWXTmZ1fZQoaAZHQJeOvV6NVBFoB03oA2gIR0Cnl1YcWCVbdX2UKGgGR0B7JgipvP1MaAdN6ANoCEdAp5xwgieNDXV9lChoBkdAmRmbVz6rNmgHTegDaAhHQKeeNvBJqZd1fZQoaAZHQJS6hLamGdtoB03oA2gIR0CnoB4yfthNdX2UKGgGR0CYYuqfvnbJaAdN6ANoCEdAp6R+K2rn1XV9lChoBkdAlALmNipeeGgHTegDaAhHQKepaL0Bfa91fZQoaAZHQJLhq+GoJiRoB03oA2gIR0Cnq031zySWdX2UKGgGR0CQlA3DvVmSaAdN6ANoCEdAp60wEt/WlXV9lChoBkdAgAnXPJJXhmgHTegDaAhHQKexeMcZLqV1fZQoaAZHQJSKF0fYBeZoB03oA2gIR0CntkFqagEmdX2UKGgGR0CN7cbdadMCaAdN6ANoCEdAp7gPTRYzSHV9lChoBkdAkOuaIWP91mgHTegDaAhHQKe6IZydWhh1fZQoaAZHQJQ5yvNeMQ5oB03oA2gIR0CnvhXVkMCtdX2UKGgGR0CTJcXqqwQlaAdN6ANoCEdAp8KR0uDjBHV9lChoBkdAk2Q9rCWNWGgHTegDaAhHQKfENwKjSG91fZQoaAZHQJH9cEidJ8RoB03oA2gIR0CnxgQPAfuDdX2UKGgGR0CRbSaFEiMYaAdN6ANoCEdAp8n0Vi4J/3V9lChoBkdAjnxTsQd0aWgHTegDaAhHQKfOj6cAiml1fZQoaAZHQJJNfSx7iQ1oB03oA2gIR0Cn0EjSgGr0dX2UKGgGR0CUYL/h2nsLaAdN6ANoCEdAp9IurZJ04nV9lChoBkdAkqhCuQp4KWgHTegDaAhHQKfWRGKhtch1fZQoaAZHQJJlP/yXlbNoB03oA2gIR0Cn2t508vEkdX2UKGgGR0CMatVf/m1ZaAdN6ANoCEdAp9yTIBBAwHV9lChoBkdAigXmG/N7jWgHTegDaAhHQKfeYAMlTm51fZQoaAZHQIq4SMUAT7FoB03oA2gIR0Cn4mMrVe8gdX2UKGgGR0CR9JPI4lyBaAdN6ANoCEdAp+b3/3nIQ3V9lChoBkdAkx9I73fygGgHTegDaAhHQKfosr8R+Sd1fZQoaAZHQIzagfCAMDxoB03oA2gIR0Cn6oJXIU8FdX2UKGgGR0CR7eBuXNTtaAdN6ANoCEdAp+58otthu3V9lChoBkdAjjEM3ZPEbmgHTdoDaAhHQKfy2s7uDz11fZQoaAZHQJBQ7ujRD1JoB03oA2gIR0Cn9MImgJ1JdX2UKGgGR0CRZf+4LCvYaAdN6ANoCEdAp/aWqebut3V9lChoBkdAlkV5aq0dBGgHTegDaAhHQKf6jiJfpll1fZQoaAZHQJXRSHpKSPloB03oA2gIR0Cn/yVbqyGBdX2UKGgGR0CVKXnpB5X2aAdN6ANoCEdAqAD3DpC8e3V9lChoBkdAlLiu4oZydWgHTegDaAhHQKgCwOFxn4B1fZQoaAZHQJGn8UsWfshoB03oA2gIR0CoBrEZzgdfdX2UKGgGR0CQVVMfzSThaAdN6ANoCEdAqAsJVjqfOHV9lChoBkdAk6GkLUkOZ2gHTegDaAhHQKgM6rRSgoR1fZQoaAZHQJILm0LMLWtoB03oA2gIR0CoDridjG1hdX2UKGgGR0CSiD4SYgJUaAdN6ANoCEdAqBLa1Cw8n3V9lChoBkdAlHVFvqC6H2gHTegDaAhHQKgXLrGipNt1fZQoaAZHQJTt1ZuAI6doB03oA2gIR0CoGRBxYJVsdX2UKGgGR0COK5yo4uK5aAdN6ANoCEdAqBruPLgXM3V9lChoBkdAjqYqWcBltmgHTegDaAhHQKge+3LFGXp1fZQoaAZHQJByahcqvvBoB03oA2gIR0CoI1duP3i8dX2UKGgGR0CTUEXtjTa1aAdN6ANoCEdAqCU0w8GLUHV9lChoBkdAjqeBf0Eov2gHTegDaAhHQKgnB0SRKYl1fZQoaAZHQIi1dLeyiVVoB03oA2gIR0CoKvDMmnfmdX2UKGgGR0CRmeXw9aEBaAdN6ANoCEdAqC9pc3VConV9lChoBkdAkfgeC5EtumgHTegDaAhHQKgxSO/cnE51fZQoaAZHQI0ojErGza9oB03oA2gIR0CoMzL2HtWudX2UKGgGR0CNBVAZbY9QaAdN6ANoCEdAqDczqKP4mHV9lChoBkdAkBZ93Sro4mgHTegDaAhHQKg7kydFvyd1fZQoaAZHQIam8Bp5/spoB03oA2gIR0CoPX8Co0hvdX2UKGgGR0CSYcJqqOtGaAdN6ANoCEdAqD9MDhcZ+HV9lChoBkdAk7JXMY/FBWgHTegDaAhHQKhDPjYI0Il1fZQoaAZHQJR4FCMPz4FoB03oA2gIR0CoR6xlg+hXdX2UKGgGR0CRv2fK6nR+aAdN6ANoCEdAqEmVUp/gBXV9lChoBkdAiBnLgflp5GgHTegDaAhHQKhLWQZn+Q51fZQoaAZHQIEDpbMX7+FoB024AmgIR0CoS7OnVG1AdX2UKGgGR0CQjqk5IYm+aAdN6ANoCEdAqFQhNqQA/HV9lChoBkdAlLR24RVZLmgHTegDaAhHQKhWB+xW1dB1fZQoaAZHQJPf9HYpUgloB03oA2gIR0CoV9M2vStvdX2UKGgGR0CUss77Kq4paAdN6ANoCEdAqFglZeRgZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4361edc9f8c265b101c6674131b912b14ec70e4bbd752bbd9d0fe2095544374
3
+ size 1161329
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1362.628043816157, "std_reward": 141.3569467076292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T21:43:28.852233"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aced182bff5f375c93c750c51e359be65614d107f6deac0d92e02c711185fca
3
+ size 2136