Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1362.63 +/- 141.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb643363e60b1342de9d58705b6019fe6c656a6729be5c2b38221edd75f222b0
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efd43023d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd43023dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd43023e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd43023ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efd43023f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efd43028040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd430280d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd43028160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efd430281f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd43028280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd43028310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd430283a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7efd4301ce70>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674420601964606449,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHa2DT/QUaa/iVEawMgO0j5TXbW/HPrGvt49nL98cVU/+YX1v7nTj8C+zla/LlE5PuRtIr7qvHvAnHIZvef1UT948rc/qF44vfcTtb9EIe2/t2yYP1lQg75xSPQ/x4/FP9FpyL81+Jg+eWHdv5x/fz+frc0/xbuMvxlYPL9yDg0/xculv7+bST4FANK/kii8v7eTaT8WhzY/5GQ5Pn5D1r5vQrg/3KymvNcOHj8oEZ2/QnDUvxRUlTsV7BPAe5hbvUq0vT/mooW+S4KZvPSSi7+IgCM/NfiYPjcEFD9SQIC/M6+KPul32z3RmSE/uXpqP7JTMMA+awo/nXrevuf4/D70vgTADE1lP1u1zL4nmcw/RvZePsSnqL+C0V++0TUHQNChuD8wt5e97oI3v8/zBMAf26s/fErXPqCWBT9VPNs/0WnIvzX4mD55Yd2/nH9/PzgZhT/0xrK9FRYHP2xg8T8Lr7i/otGlPmzanr/X4nu/cqqRP9vjqLwrdra+Qv2ivqOLsD+BvpW+F84JP94npb8G6QO/i2SPv9vwmb/+Rtk++2a6P2IfTL7EdAe/0Q4dwIiAIz81+Jg+NwQUP1JAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/o2s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeOBvQAAAACKt9+/AAAAAJ4uQbwAAAAAM7vePwAAAABHQVW8AAAAAFyT+z8AAAAAaNfqvQAAAABTQum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EtOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/MQj0AAAAARrv6vwAAAAC1ANA9AAAAAApg4j8AAAAAWC/SvQAAAADF9v0/AAAAAKNOcbwAAAAAKSvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTDPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSHrQ9AAAAAL3Q4L8AAAAAl+MoPQAAAACVuds/AAAAAN1Yyb0AAAAAmAP3PwAAAAB2qLi8AAAAAJvh578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUHm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYAXGPQAAAACQHwHAAAAAAHN88r0AAAAA/Jn+PwAAAAAI7Yq9AAAAADnnAEAAAAAAfY/2vQAAAABThOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI71bBl+VkeMAWyUTegDjAF0lEdApywuw9q1xHV9lChoBkdAjFGO5J9RaWgHTegDaAhHQKct4m4RVZN1fZQoaAZHQIZAPavicXpoB03oA2gIR0CnL6S3solVdX2UKGgGR0CN3LiBGx2TaAdN6ANoCEdApzORkCmuT3V9lChoBkdAiTfKVyFPBWgHTegDaAhHQKc4HIBBAwB1fZQoaAZHQHDL1x82Ji1oB03oA2gIR0CnOb7KA8SxdX2UKGgGR0CIAretSydGaAdN6ANoCEdApzuHBpHqeXV9lChoBkdAkkoAt4A0bmgHTegDaAhHQKc/gLzf7791fZQoaAZHQI4Kfwy6+WZoB03oA2gIR0CnRAzImw7ldX2UKGgGR0CX8iT3IuGsaAdN6ANoCEdAp0XWtjkMkXV9lChoBkdAlCpOLvTgEWgHTegDaAhHQKdHm1ivxH51fZQoaAZHQJELI0ZWJadoB03oA2gIR0CnS4WwmmcfdX2UKGgGR0CU0wiaAnUlaAdN6ANoCEdAp1Aq7/XGwXV9lChoBkdAluSKySmqHWgHTegDaAhHQKdSLjurp7l1fZQoaAZHQJSpyJj2BatoB03oA2gIR0CnVDhr30wrdX2UKGgGR0CWl7BAOavzaAdN6ANoCEdAp1jXGEPDpHV9lChoBkdAkXr6Mm4RVmgHTegDaAhHQKdd3UVBUrF1fZQoaAZHQJZJAiA2AG1oB03oA2gIR0CnX5ysKb8WdX2UKGgGR0CY/+jdHlOoaAdN6ANoCEdAp2FumaYu03V9lChoBkdAlxwUfcN6PmgHTegDaAhHQKdlbCFbmlt1fZQoaAZHQJbNAiX6ZYxoB03oA2gIR0CnaiGITGo8dX2UKGgGR0CXepBjnV5KaAdN6ANoCEdAp2vdQ2uPm3V9lChoBkdAmkgwPiDM/2gHTegDaAhHQKdtvGKhtch1fZQoaAZHQJReCGTLW7RoB03oA2gIR0CnchB7NSqEdX2UKGgGR0CWS1VJcxCZaAdN6ANoCEdAp3aueg+Ql3V9lChoBkdAlqVVxn3+M2gHTegDaAhHQKd4WYDTz/Z1fZQoaAZHQJb8gSpR4yJoB03oA2gIR0Cnei/kmx+sdX2UKGgGR0CV6AohIOH4aAdN6ANoCEdAp36FBnjABXV9lChoBkdAmNYSEYfnwGgHTegDaAhHQKeDFLzwtrd1fZQoaAZHQJWTVl2/zrhoB03oA2gIR0CnhLxradtmdX2UKGgGR0CYAGcbzbvgaAdN6ANoCEdAp4aW7z06HXV9lChoBkdAmcxw1zhgmmgHTegDaAhHQKeKp8rqdH51fZQoaAZHQJeR/3ztkWhoB03oA2gIR0Cnj0DmSyMUdX2UKGgGR0CW21LW7OE/aAdN6ANoCEdAp5EIIv8IiXV9lChoBkdAmYN5lrdnCmgHTegDaAhHQKeS7MWXTmZ1fZQoaAZHQJeOvV6NVBFoB03oA2gIR0Cnl1YcWCVbdX2UKGgGR0B7JgipvP1MaAdN6ANoCEdAp5xwgieNDXV9lChoBkdAmRmbVz6rNmgHTegDaAhHQKeeNvBJqZd1fZQoaAZHQJS6hLamGdtoB03oA2gIR0CnoB4yfthNdX2UKGgGR0CYYuqfvnbJaAdN6ANoCEdAp6R+K2rn1XV9lChoBkdAlALmNipeeGgHTegDaAhHQKepaL0Bfa91fZQoaAZHQJLhq+GoJiRoB03oA2gIR0Cnq031zySWdX2UKGgGR0CQlA3DvVmSaAdN6ANoCEdAp60wEt/WlXV9lChoBkdAgAnXPJJXhmgHTegDaAhHQKexeMcZLqV1fZQoaAZHQJSKF0fYBeZoB03oA2gIR0CntkFqagEmdX2UKGgGR0CN7cbdadMCaAdN6ANoCEdAp7gPTRYzSHV9lChoBkdAkOuaIWP91mgHTegDaAhHQKe6IZydWhh1fZQoaAZHQJQ5yvNeMQ5oB03oA2gIR0CnvhXVkMCtdX2UKGgGR0CTJcXqqwQlaAdN6ANoCEdAp8KR0uDjBHV9lChoBkdAk2Q9rCWNWGgHTegDaAhHQKfENwKjSG91fZQoaAZHQJH9cEidJ8RoB03oA2gIR0CnxgQPAfuDdX2UKGgGR0CRbSaFEiMYaAdN6ANoCEdAp8n0Vi4J/3V9lChoBkdAjnxTsQd0aWgHTegDaAhHQKfOj6cAiml1fZQoaAZHQJJNfSx7iQ1oB03oA2gIR0Cn0EjSgGr0dX2UKGgGR0CUYL/h2nsLaAdN6ANoCEdAp9IurZJ04nV9lChoBkdAkqhCuQp4KWgHTegDaAhHQKfWRGKhtch1fZQoaAZHQJJlP/yXlbNoB03oA2gIR0Cn2t508vEkdX2UKGgGR0CMatVf/m1ZaAdN6ANoCEdAp9yTIBBAwHV9lChoBkdAigXmG/N7jWgHTegDaAhHQKfeYAMlTm51fZQoaAZHQIq4SMUAT7FoB03oA2gIR0Cn4mMrVe8gdX2UKGgGR0CR9JPI4lyBaAdN6ANoCEdAp+b3/3nIQ3V9lChoBkdAkx9I73fygGgHTegDaAhHQKfosr8R+Sd1fZQoaAZHQIzagfCAMDxoB03oA2gIR0Cn6oJXIU8FdX2UKGgGR0CR7eBuXNTtaAdN6ANoCEdAp+58otthu3V9lChoBkdAjjEM3ZPEbmgHTdoDaAhHQKfy2s7uDz11fZQoaAZHQJBQ7ujRD1JoB03oA2gIR0Cn9MImgJ1JdX2UKGgGR0CRZf+4LCvYaAdN6ANoCEdAp/aWqebut3V9lChoBkdAlkV5aq0dBGgHTegDaAhHQKf6jiJfpll1fZQoaAZHQJXRSHpKSPloB03oA2gIR0Cn/yVbqyGBdX2UKGgGR0CVKXnpB5X2aAdN6ANoCEdAqAD3DpC8e3V9lChoBkdAlLiu4oZydWgHTegDaAhHQKgCwOFxn4B1fZQoaAZHQJGn8UsWfshoB03oA2gIR0CoBrEZzgdfdX2UKGgGR0CQVVMfzSThaAdN6ANoCEdAqAsJVjqfOHV9lChoBkdAk6GkLUkOZ2gHTegDaAhHQKgM6rRSgoR1fZQoaAZHQJILm0LMLWtoB03oA2gIR0CoDridjG1hdX2UKGgGR0CSiD4SYgJUaAdN6ANoCEdAqBLa1Cw8n3V9lChoBkdAlHVFvqC6H2gHTegDaAhHQKgXLrGipNt1fZQoaAZHQJTt1ZuAI6doB03oA2gIR0CoGRBxYJVsdX2UKGgGR0COK5yo4uK5aAdN6ANoCEdAqBruPLgXM3V9lChoBkdAjqYqWcBltmgHTegDaAhHQKge+3LFGXp1fZQoaAZHQJByahcqvvBoB03oA2gIR0CoI1duP3i8dX2UKGgGR0CTUEXtjTa1aAdN6ANoCEdAqCU0w8GLUHV9lChoBkdAjqeBf0Eov2gHTegDaAhHQKgnB0SRKYl1fZQoaAZHQIi1dLeyiVVoB03oA2gIR0CoKvDMmnfmdX2UKGgGR0CRmeXw9aEBaAdN6ANoCEdAqC9pc3VConV9lChoBkdAkfgeC5EtumgHTegDaAhHQKgxSO/cnE51fZQoaAZHQI0ojErGza9oB03oA2gIR0CoMzL2HtWudX2UKGgGR0CNBVAZbY9QaAdN6ANoCEdAqDczqKP4mHV9lChoBkdAkBZ93Sro4mgHTegDaAhHQKg7kydFvyd1fZQoaAZHQIam8Bp5/spoB03oA2gIR0CoPX8Co0hvdX2UKGgGR0CSYcJqqOtGaAdN6ANoCEdAqD9MDhcZ+HV9lChoBkdAk7JXMY/FBWgHTegDaAhHQKhDPjYI0Il1fZQoaAZHQJR4FCMPz4FoB03oA2gIR0CoR6xlg+hXdX2UKGgGR0CRv2fK6nR+aAdN6ANoCEdAqEmVUp/gBXV9lChoBkdAiBnLgflp5GgHTegDaAhHQKhLWQZn+Q51fZQoaAZHQIEDpbMX7+FoB024AmgIR0CoS7OnVG1AdX2UKGgGR0CQjqk5IYm+aAdN6ANoCEdAqFQhNqQA/HV9lChoBkdAlLR24RVZLmgHTegDaAhHQKhWB+xW1dB1fZQoaAZHQJPf9HYpUgloB03oA2gIR0CoV9M2vStvdX2UKGgGR0CUss77Kq4paAdN6ANoCEdAqFglZeRgZ3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb959ad44fb80d305c9441836d7c0489448b97ad78cf4095f0c26d91660fe290
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b01328fcf297a8d9c6f6b44418926913ec67566079621541a1d3584acdfd5e9
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd43023d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd43023dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd43023e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd43023ee0>", "_build": "<function ActorCriticPolicy._build at 0x7efd43023f70>", "forward": "<function ActorCriticPolicy.forward at 0x7efd43028040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd430280d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd43028160>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd430281f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd43028280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd43028310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd430283a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd4301ce70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674420601964606449, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHa2DT/QUaa/iVEawMgO0j5TXbW/HPrGvt49nL98cVU/+YX1v7nTj8C+zla/LlE5PuRtIr7qvHvAnHIZvef1UT948rc/qF44vfcTtb9EIe2/t2yYP1lQg75xSPQ/x4/FP9FpyL81+Jg+eWHdv5x/fz+frc0/xbuMvxlYPL9yDg0/xculv7+bST4FANK/kii8v7eTaT8WhzY/5GQ5Pn5D1r5vQrg/3KymvNcOHj8oEZ2/QnDUvxRUlTsV7BPAe5hbvUq0vT/mooW+S4KZvPSSi7+IgCM/NfiYPjcEFD9SQIC/M6+KPul32z3RmSE/uXpqP7JTMMA+awo/nXrevuf4/D70vgTADE1lP1u1zL4nmcw/RvZePsSnqL+C0V++0TUHQNChuD8wt5e97oI3v8/zBMAf26s/fErXPqCWBT9VPNs/0WnIvzX4mD55Yd2/nH9/PzgZhT/0xrK9FRYHP2xg8T8Lr7i/otGlPmzanr/X4nu/cqqRP9vjqLwrdra+Qv2ivqOLsD+BvpW+F84JP94npb8G6QO/i2SPv9vwmb/+Rtk++2a6P2IfTL7EdAe/0Q4dwIiAIz81+Jg+NwQUP1JAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/o2s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxeOBvQAAAACKt9+/AAAAAJ4uQbwAAAAAM7vePwAAAABHQVW8AAAAAFyT+z8AAAAAaNfqvQAAAABTQum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EtOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/MQj0AAAAARrv6vwAAAAC1ANA9AAAAAApg4j8AAAAAWC/SvQAAAADF9v0/AAAAAKNOcbwAAAAAKSvvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTDPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSHrQ9AAAAAL3Q4L8AAAAAl+MoPQAAAACVuds/AAAAAN1Yyb0AAAAAmAP3PwAAAAB2qLi8AAAAAJvh578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARUHm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYAXGPQAAAACQHwHAAAAAAHN88r0AAAAA/Jn+PwAAAAAI7Yq9AAAAADnnAEAAAAAAfY/2vQAAAABThOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI71bBl+VkeMAWyUTegDjAF0lEdApywuw9q1xHV9lChoBkdAjFGO5J9RaWgHTegDaAhHQKct4m4RVZN1fZQoaAZHQIZAPavicXpoB03oA2gIR0CnL6S3solVdX2UKGgGR0CN3LiBGx2TaAdN6ANoCEdApzORkCmuT3V9lChoBkdAiTfKVyFPBWgHTegDaAhHQKc4HIBBAwB1fZQoaAZHQHDL1x82Ji1oB03oA2gIR0CnOb7KA8SxdX2UKGgGR0CIAretSydGaAdN6ANoCEdApzuHBpHqeXV9lChoBkdAkkoAt4A0bmgHTegDaAhHQKc/gLzf7791fZQoaAZHQI4Kfwy6+WZoB03oA2gIR0CnRAzImw7ldX2UKGgGR0CX8iT3IuGsaAdN6ANoCEdAp0XWtjkMkXV9lChoBkdAlCpOLvTgEWgHTegDaAhHQKdHm1ivxH51fZQoaAZHQJELI0ZWJadoB03oA2gIR0CnS4WwmmcfdX2UKGgGR0CU0wiaAnUlaAdN6ANoCEdAp1Aq7/XGwXV9lChoBkdAluSKySmqHWgHTegDaAhHQKdSLjurp7l1fZQoaAZHQJSpyJj2BatoB03oA2gIR0CnVDhr30wrdX2UKGgGR0CWl7BAOavzaAdN6ANoCEdAp1jXGEPDpHV9lChoBkdAkXr6Mm4RVmgHTegDaAhHQKdd3UVBUrF1fZQoaAZHQJZJAiA2AG1oB03oA2gIR0CnX5ysKb8WdX2UKGgGR0CY/+jdHlOoaAdN6ANoCEdAp2FumaYu03V9lChoBkdAlxwUfcN6PmgHTegDaAhHQKdlbCFbmlt1fZQoaAZHQJbNAiX6ZYxoB03oA2gIR0CnaiGITGo8dX2UKGgGR0CXepBjnV5KaAdN6ANoCEdAp2vdQ2uPm3V9lChoBkdAmkgwPiDM/2gHTegDaAhHQKdtvGKhtch1fZQoaAZHQJReCGTLW7RoB03oA2gIR0CnchB7NSqEdX2UKGgGR0CWS1VJcxCZaAdN6ANoCEdAp3aueg+Ql3V9lChoBkdAlqVVxn3+M2gHTegDaAhHQKd4WYDTz/Z1fZQoaAZHQJb8gSpR4yJoB03oA2gIR0Cnei/kmx+sdX2UKGgGR0CV6AohIOH4aAdN6ANoCEdAp36FBnjABXV9lChoBkdAmNYSEYfnwGgHTegDaAhHQKeDFLzwtrd1fZQoaAZHQJWTVl2/zrhoB03oA2gIR0CnhLxradtmdX2UKGgGR0CYAGcbzbvgaAdN6ANoCEdAp4aW7z06HXV9lChoBkdAmcxw1zhgmmgHTegDaAhHQKeKp8rqdH51fZQoaAZHQJeR/3ztkWhoB03oA2gIR0Cnj0DmSyMUdX2UKGgGR0CW21LW7OE/aAdN6ANoCEdAp5EIIv8IiXV9lChoBkdAmYN5lrdnCmgHTegDaAhHQKeS7MWXTmZ1fZQoaAZHQJeOvV6NVBFoB03oA2gIR0Cnl1YcWCVbdX2UKGgGR0B7JgipvP1MaAdN6ANoCEdAp5xwgieNDXV9lChoBkdAmRmbVz6rNmgHTegDaAhHQKeeNvBJqZd1fZQoaAZHQJS6hLamGdtoB03oA2gIR0CnoB4yfthNdX2UKGgGR0CYYuqfvnbJaAdN6ANoCEdAp6R+K2rn1XV9lChoBkdAlALmNipeeGgHTegDaAhHQKepaL0Bfa91fZQoaAZHQJLhq+GoJiRoB03oA2gIR0Cnq031zySWdX2UKGgGR0CQlA3DvVmSaAdN6ANoCEdAp60wEt/WlXV9lChoBkdAgAnXPJJXhmgHTegDaAhHQKexeMcZLqV1fZQoaAZHQJSKF0fYBeZoB03oA2gIR0CntkFqagEmdX2UKGgGR0CN7cbdadMCaAdN6ANoCEdAp7gPTRYzSHV9lChoBkdAkOuaIWP91mgHTegDaAhHQKe6IZydWhh1fZQoaAZHQJQ5yvNeMQ5oB03oA2gIR0CnvhXVkMCtdX2UKGgGR0CTJcXqqwQlaAdN6ANoCEdAp8KR0uDjBHV9lChoBkdAk2Q9rCWNWGgHTegDaAhHQKfENwKjSG91fZQoaAZHQJH9cEidJ8RoB03oA2gIR0CnxgQPAfuDdX2UKGgGR0CRbSaFEiMYaAdN6ANoCEdAp8n0Vi4J/3V9lChoBkdAjnxTsQd0aWgHTegDaAhHQKfOj6cAiml1fZQoaAZHQJJNfSx7iQ1oB03oA2gIR0Cn0EjSgGr0dX2UKGgGR0CUYL/h2nsLaAdN6ANoCEdAp9IurZJ04nV9lChoBkdAkqhCuQp4KWgHTegDaAhHQKfWRGKhtch1fZQoaAZHQJJlP/yXlbNoB03oA2gIR0Cn2t508vEkdX2UKGgGR0CMatVf/m1ZaAdN6ANoCEdAp9yTIBBAwHV9lChoBkdAigXmG/N7jWgHTegDaAhHQKfeYAMlTm51fZQoaAZHQIq4SMUAT7FoB03oA2gIR0Cn4mMrVe8gdX2UKGgGR0CR9JPI4lyBaAdN6ANoCEdAp+b3/3nIQ3V9lChoBkdAkx9I73fygGgHTegDaAhHQKfosr8R+Sd1fZQoaAZHQIzagfCAMDxoB03oA2gIR0Cn6oJXIU8FdX2UKGgGR0CR7eBuXNTtaAdN6ANoCEdAp+58otthu3V9lChoBkdAjjEM3ZPEbmgHTdoDaAhHQKfy2s7uDz11fZQoaAZHQJBQ7ujRD1JoB03oA2gIR0Cn9MImgJ1JdX2UKGgGR0CRZf+4LCvYaAdN6ANoCEdAp/aWqebut3V9lChoBkdAlkV5aq0dBGgHTegDaAhHQKf6jiJfpll1fZQoaAZHQJXRSHpKSPloB03oA2gIR0Cn/yVbqyGBdX2UKGgGR0CVKXnpB5X2aAdN6ANoCEdAqAD3DpC8e3V9lChoBkdAlLiu4oZydWgHTegDaAhHQKgCwOFxn4B1fZQoaAZHQJGn8UsWfshoB03oA2gIR0CoBrEZzgdfdX2UKGgGR0CQVVMfzSThaAdN6ANoCEdAqAsJVjqfOHV9lChoBkdAk6GkLUkOZ2gHTegDaAhHQKgM6rRSgoR1fZQoaAZHQJILm0LMLWtoB03oA2gIR0CoDridjG1hdX2UKGgGR0CSiD4SYgJUaAdN6ANoCEdAqBLa1Cw8n3V9lChoBkdAlHVFvqC6H2gHTegDaAhHQKgXLrGipNt1fZQoaAZHQJTt1ZuAI6doB03oA2gIR0CoGRBxYJVsdX2UKGgGR0COK5yo4uK5aAdN6ANoCEdAqBruPLgXM3V9lChoBkdAjqYqWcBltmgHTegDaAhHQKge+3LFGXp1fZQoaAZHQJByahcqvvBoB03oA2gIR0CoI1duP3i8dX2UKGgGR0CTUEXtjTa1aAdN6ANoCEdAqCU0w8GLUHV9lChoBkdAjqeBf0Eov2gHTegDaAhHQKgnB0SRKYl1fZQoaAZHQIi1dLeyiVVoB03oA2gIR0CoKvDMmnfmdX2UKGgGR0CRmeXw9aEBaAdN6ANoCEdAqC9pc3VConV9lChoBkdAkfgeC5EtumgHTegDaAhHQKgxSO/cnE51fZQoaAZHQI0ojErGza9oB03oA2gIR0CoMzL2HtWudX2UKGgGR0CNBVAZbY9QaAdN6ANoCEdAqDczqKP4mHV9lChoBkdAkBZ93Sro4mgHTegDaAhHQKg7kydFvyd1fZQoaAZHQIam8Bp5/spoB03oA2gIR0CoPX8Co0hvdX2UKGgGR0CSYcJqqOtGaAdN6ANoCEdAqD9MDhcZ+HV9lChoBkdAk7JXMY/FBWgHTegDaAhHQKhDPjYI0Il1fZQoaAZHQJR4FCMPz4FoB03oA2gIR0CoR6xlg+hXdX2UKGgGR0CRv2fK6nR+aAdN6ANoCEdAqEmVUp/gBXV9lChoBkdAiBnLgflp5GgHTegDaAhHQKhLWQZn+Q51fZQoaAZHQIEDpbMX7+FoB024AmgIR0CoS7OnVG1AdX2UKGgGR0CQjqk5IYm+aAdN6ANoCEdAqFQhNqQA/HV9lChoBkdAlLR24RVZLmgHTegDaAhHQKhWB+xW1dB1fZQoaAZHQJPf9HYpUgloB03oA2gIR0CoV9M2vStvdX2UKGgGR0CUss77Kq4paAdN6ANoCEdAqFglZeRgZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4361edc9f8c265b101c6674131b912b14ec70e4bbd752bbd9d0fe2095544374
|
3 |
+
size 1161329
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1362.628043816157, "std_reward": 141.3569467076292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T21:43:28.852233"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8aced182bff5f375c93c750c51e359be65614d107f6deac0d92e02c711185fca
|
3 |
+
size 2136
|