--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-ner-custom-v2 results: [] --- # bert-ner-custom-v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1316 - Precision: 0.8231 - Recall: 0.8357 - F1: 0.8294 - Accuracy: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1442 | 1.0 | 4796 | 0.1375 | 0.8052 | 0.8311 | 0.8179 | 0.9573 | | 0.1046 | 2.0 | 9592 | 0.1273 | 0.8260 | 0.8315 | 0.8287 | 0.9606 | | 0.0834 | 3.0 | 14388 | 0.1316 | 0.8231 | 0.8357 | 0.8294 | 0.9613 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1