--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7957 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9948 | 1.0 | 113 | 1.8574 | 0.47 | | 1.4469 | 2.0 | 226 | 1.4344 | 0.56 | | 1.1252 | 3.0 | 339 | 1.2494 | 0.62 | | 0.6748 | 4.0 | 452 | 0.9439 | 0.72 | | 0.6665 | 5.0 | 565 | 1.0755 | 0.66 | | 0.5936 | 6.0 | 678 | 0.8247 | 0.78 | | 0.3746 | 7.0 | 791 | 0.8514 | 0.74 | | 0.1953 | 8.0 | 904 | 0.7913 | 0.8 | | 0.2671 | 9.0 | 1017 | 0.7756 | 0.82 | | 0.053 | 10.0 | 1130 | 0.7935 | 0.84 | | 0.0531 | 11.0 | 1243 | 0.8997 | 0.83 | | 0.0449 | 12.0 | 1356 | 0.7957 | 0.84 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2