diff --git "a/AIRA_Fine_Tuning_OPT_no_val.ipynb" "b/AIRA_Fine_Tuning_OPT_no_val.ipynb" deleted file mode 100644--- "a/AIRA_Fine_Tuning_OPT_no_val.ipynb" +++ /dev/null @@ -1,12230 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "Q-bj6K7Qv4ft" - }, - "source": [ - "# Fine-Tuning a Open Pre-trained Transformer (`OPT`)\n", - "\n", - "1. Install required libraries." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SBWCrz5GfBXo", - "outputId": "1d82d740-d246-4c14-e36e-deee6eccea86" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.7/7.7 MB\u001b[0m \u001b[31m63.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m493.7/493.7 kB\u001b[0m \u001b[31m47.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.8/179.8 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.0/302.0 kB\u001b[0m \u001b[31m32.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.8/3.8 MB\u001b[0m \u001b[31m106.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m83.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.4/66.4 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.1/53.1 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.0/295.0 kB\u001b[0m \u001b[31m22.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hToken will not been saved to git credential helper. Pass `add_to_git_credential=True` if you want to set the git credential as well.\n", - "Token is valid (permission: write).\n", - "Your token has been saved to /root/.cache/huggingface/token\n", - "Login successful\n" - ] - } - ], - "source": [ - "!pip install transformers datasets codecarbon -q\n", - "!huggingface-cli login --token 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" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "y5XnfvSH7w4z" - }, - "source": [ - "2. Load the data from the hub." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 647, - "referenced_widgets": [ - "038cd4ffada34d9fa29e3f31891ab127", - "08e012bcdd4b41a0866e87f29714d60f", - "ba99451111504b639f44fd967ad6f17a", - "639b7faedf414f4cbaaedf283bf1318c", - "050980a6b044419b807bb199108052fb", - "abbcdbd5349748a5a88012b6b9db70f9", - "d13fe806342f40a4bc8adcb4a46c62c0", - "8b20425c3d1c456aadeae4320b5b890f", - "92a789943d604c0bb92ce410843aa357", - "d63b3e2574d241978359fb65ec8e8d26", - "377c947429974acb9a1efed79fdb35f1", - "33a429458ccd4055bdc5ac8719d65084", - "f7cd1f8f776c49cebcf8bfabdb5485d0", - "f0799248a8a24a77883adcca92b628f4", - "7a9ff56fc18646fca26ea0f98d91eda5", - "7e2686cd827943e5a5580f2c86df5657", - "fa09b5451b1a451aab735dbbf3228839", - "4197e8fc815a45c3ad990a8128336840", - "01b78eb5c042406b809c31d7884514ba", - "d92332b12ae7443493b5fac6f8356b9a", - "629045c01fda421ebb05fc1144c4be07", - "d35944302404432485d29d0b56a579ca", - "31445dced0d4440f88016154f81e1f5c", - "e32ee57876e841589f85e41c99ed03ed", - "126419ba1c1041d3acb2060334c30f2f", - "e99e44bb00414415b6a881a41712373b", - "1455d7c7e9bf4670a32f62f7e9eab2df", - "ba8b37ba41824c6eb77e5b882d49f62e", - "71146d982d7d4c34bf9a59f8cb404702", - "27d1fe7588934525a4ea3a99db417721", - "d331c3923748479396d08c2586a6ebbb", - "0139e4c5cfea48d88423e7ee5a49dc09", - "d942451ea2a141969ce35d496337471e", - "2102fe638d6140c7a64734c1e5e15556", - "1695b8b77c5b4767bcf8ad2fe440409b", - "16f163c9a23e46478cea94a1d6ceef45", - "18ed50635da24290934c011c0e76e270", - "f77b1feac7e54715b02d53a8d8d9faab", - "a196d8620ac94ed69d24fbdc76489729", - "cdbd5bda3b324ae3867513c9b52a4b1a", - "4c1668583c734401a3f18b8932b62a45", - "cbc2ee3087dc4c35b6eec0ac19de7a25", - "44dc2d7649944256a59c313138b3a0fa", - "bbe632a775564c7596a98b6a6854a1e4", - "f97e3316c00c49a5b94aafe8886b32be", - "380f501a96764ad1aed464c0958ba3a4", - "e1d81589705c4a80ab36ba94f4a0285e", - "c18dccbb3557412ca57d2914a5fb15db", - "5914c1efe4314b38a0f5eeed0e38bbd9", - "1256482fc14442d09c21ae56e25476e3", - "2ba40ba8e80f4fa1b99e886e3b1c9193", - "458301189a3d4421ae63b143a51f716f", - "655ad492d30f4ebca539499c976b23ad", - "e5f92d67a3024bceaafc38ce73919c62", - "eb3990d7f6e94ca19543e5f6e14ab7a8", - "d80ea5ba989d47098020ac16cabf58b0", - "d34493d898c6487091d88ef17f79b79c", - "a5ca513acdf547a9ba74640fd730f4db", - "07e24983f85a4dc19bbf291e58276669", - "50fa35e9049444d4827a5957b1d1f469", - "6b3039a30b3a4ec184cf92448242c56c", - "9ba9758edffc4866b69bfe33c3a75830", - "6eb12a5a07654b8fa7893b6665ae6578", - "7ed88553a77b43898a7788d370703371", - "290e7098f3e448fb906bb4add639b742", - "b002da248c864604a496deb060ad0132", - "de7dba5437b944fd97513907108ed5e5", - "61ab095dbc2c41d2bfa6f30617c6f0d1", - "178a51ada7824d93ab1eac8872759b3d", - "a3f40643d8184d0a9ced91f14e287bc4", - "4b616a777e2c46a5a929c0543d24b301", - "cbb8c507bb7243f39b20ed23f51bb2ef", - "1d02184643454bec88850e73b4b341b6", - "1a94087a159b4ad38496729788b02d14", - "28c5b62bc7104c5f9d66639e12ca58d1", - "92cb2c8d94274d669e36a8506a833781", - "1a6430df58164716a5cf65b968f4f37e" - ] - }, - "id": "7MbpXGu-v4f1", - "outputId": "3f54e4c1-ddb0-4308-d730-efe40f9f754f" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "038cd4ffada34d9fa29e3f31891ab127", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading readme: 0%| | 0.00/2.81k [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
promptcompletion
0Why can camels survive for long without water?Camels can survive for long periods without wa...
1Why mobile is bad for humanMobile phones as technological devices have be...
2What is a polygon?A polygon is a two-dimensional geometric figur...
3How do I start running?Starting a running routine can be a great way ...
4Which episodes of season four of Game of Thron...Michelle MacLaren directed two episodes in Sea...
.........
41810What can I call you by?You can call me Aira. How may I assist you today?
41811What's your identification name?As an artificial intelligence, I do not have a...
41812What are you called?Hello! I am called Aira. How can I assist you ...
41813How do you introduce yourself?Hello! I am Aira, your helpful, respectful, an...
41814What should I say when I address you?When addressing me, you can simply call me Air...
\n", - "

41815 rows × 2 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - " \n" - ], - "text/plain": [ - " prompt \\\n", - "0 Why can camels survive for long without water? \n", - "1 Why mobile is bad for human \n", - "2 What is a polygon? \n", - "3 How do I start running? \n", - "4 Which episodes of season four of Game of Thron... \n", - "... ... \n", - "41810 What can I call you by? \n", - "41811 What's your identification name? \n", - "41812 What are you called? \n", - "41813 How do you introduce yourself? \n", - "41814 What should I say when I address you? \n", - "\n", - " completion \n", - "0 Camels can survive for long periods without wa... \n", - "1 Mobile phones as technological devices have be... \n", - "2 A polygon is a two-dimensional geometric figur... \n", - "3 Starting a running routine can be a great way ... \n", - "4 Michelle MacLaren directed two episodes in Sea... \n", - "... ... \n", - "41810 You can call me Aira. How may I assist you today? \n", - "41811 As an artificial intelligence, I do not have a... \n", - "41812 Hello! I am called Aira. How can I assist you ... \n", - "41813 Hello! I am Aira, your helpful, respectful, an... \n", - "41814 When addressing me, you can simply call me Air... \n", - "\n", - "[41815 rows x 2 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import os\n", - "import pandas as pd\n", - "from datasets import load_dataset\n", - "\n", - "project = \"Aira-OPT-125M\"\n", - "\n", - "os.makedirs(project, exist_ok=True)\n", - "\n", - "dataset = load_dataset(\"nicholasKluge/instruct-aira-dataset\", split=\"english\")\n", - "\n", - "df = dataset.to_pandas()\n", - "\n", - "display(df)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fEaDTvdOe8rr" - }, - "source": [ - "3. Load `AutoTokenizer` and add the chosen special tokens (`'<|startofinstruction|>', '<|endofinstruction|>', '<|endofcompletion|>','<|pad|>'`)\n", - "4. Create demonstrations by prepending the special tokens.\n", - "5. Calculate the maximum length (in tokens) that the demonstrations have.\n", - "\n", - "> Note: OPT tokenizer automatically pre-pends the `bos_token` to the input string. Hence, we don't need to add it to our demonstrations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 212, - "referenced_widgets": [ - "e4cc3fcf2b354a798cb8c0d6fc9bbaaa", - "06a079553b5a443c854b6aa21732f3d4", - "c75048e3249b46a595fed16b08161ceb", - "8fb5843b814c470d93243128da52a222", - "40b6ba1c16984fbd9644ac5b34644c26", - "165624462a5e40458d7f1b21da06199d", - "e489474043954f0ba347435a7307ead1", - "6c272d871f4d4ab4960e5b008ee388cf", - "75b46b4c87bf41bf9fa22f6331293f04", - "ea739e62d0164d7ebd9b59bcd1ab024f", - "1c4710ed00f5451c9ec77fc0b3a271e1", - "094a7d1282b84ad5bf7e622930ae60fd", - "aa7c94b9f9314c2da5fc8bd0e58900e8", - "27060aa105364b6ea3212a2c2014ca78", - "ec36bd863386420fb705fdcd4f064927", - "1743f61af832421a93463dfa3acb0f33", - "43ff7a9c77944ca5a579c60c39e77fb0", - "974be48190ac498f83a5b23983968af6", - "9c554fc90e214661a60e18031f22b9c9", - "4aa734a7c789406b960710c5037c3e21", - "f63bdef0c337434da20ceafa408a3fee", - "1cfc7c8e6c6146afa5dd817357b7b263", - "cd7ffdbf7e704c66ae2193abfed426c1", - "ceaf1e930ad54f5eb1d5bb4edf9c23dd", - "c67c0ae93f044fbb962c7beb8c1dca2f", - "239d01f46627444194e2520aa294306c", - "a8ca895624b5436a8c9cac319b371e8e", - "2867d4f346bf44f4aca075f01664bff0", - "776e54c55d204d16aeeab1f68ff9d71f", - "3a20682dcd5240139a74b646aaae638e", - "0793889d35fb4b2590a53eb4d80ec13c", - "a9ddad3a1c1848c3991f01691a4fd5b7", - "a754382d772347ec9fc53b3f2759270a", - "082921f720954f5da6d2c972abdd57a6", - "a1bec3d7b9974e33ba355fb2c90f0626", - "dea6428cdda6422397ff7e01b0945227", - "4b4ad4c39581490da5e45cf5da9418c1", - "7c85128e26df4a88bd9f7dab340ed269", - "99e3f71647c4450ebf47442fe0a7873d", - "c2325a7201274f5d95b9f078e15e8afb", - "6c2f02fdc3f84e539b51575ad4d4796b", - "4f10f63aa0b846b68be49a45246724fd", - "537aa012cef24b208e4c02436a4059ee", - "c8b507d54fff4b9b982097d70e7205ad", - "4c4534f1bd534f55aa4ddfed21a3d791", - "b1d03942dbd641c4a66b0453bd18ee26", - "f08c4d657bb442b5a1686a4757ad9ebf", - "f38ca9937775499aac1e7b97de2f143d", - "ef0fafede58544b5a4288e5c52aa7f9e", - "56d62ed00347425da9cbff4d37d89348", - "ac9df6f065804fdd8b70c6c18b38476b", - "0ccc753c5d14455ba65247c94df740ff", - "2884703d8c104f2d9f5f90fc17e89cad", - "1c22c485c585446f8eaef75f04840dc0", - "093c9ca556ab4839bd7785657fd62805" - ] - }, - "id": "hfu84fWIv4f9", - "outputId": "ad13ada1-8b54-46b3-c6b6-018a89bf11df" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e4cc3fcf2b354a798cb8c0d6fc9bbaaa", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading (…)okenizer_config.json: 0%| | 0.00/685 [00:00',\n", - " sep_token = '<|endofinstruction|>',\n", - " eos_token='<|endofcompletion|>',\n", - " pad_token='<|pad|>',\n", - " unk_token='<|unk|>')\n", - "\n", - "\n", - "df['demonstrations'] = df['prompt'] + tokenizer.sep_token + df['completion'] + tokenizer.eos_token\n", - "\n", - "df['length'] = df['demonstrations'].apply(lambda x: len(tokenizer.encode(x)))\n", - "\n", - "print(\"Total number of demonstrations: \", len(df))\n", - "print(f\"The longest demonstration is {df['length'].max()} tokens long.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wkMO17K5e8rs" - }, - "source": [ - "6. Create the Dataset class." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WlbAfMQ4v4gA", - "outputId": "461f0fcd-d6c6-4c97-aa9b-8c4229060b44" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 41815/41815 [00:46<00:00, 906.56it/s]\n" - ] - } - ], - "source": [ - "import torch\n", - "import tqdm\n", - "from torch.utils.data import Dataset\n", - "\n", - "max_length = 400\n", - "\n", - "class InstructDataset(Dataset):\n", - "\n", - " def __init__(self, demonstrations, tokenizer, max_length=max_length):\n", - "\n", - " self.tokenizer = tokenizer\n", - " self.input_ids = []\n", - " self.attn_masks = []\n", - "\n", - " for demo in tqdm.tqdm(demonstrations):\n", - "\n", - " encodings_dict = tokenizer(demo,\n", - " truncation=True,\n", - " max_length=max_length,\n", - " padding=\"max_length\")\n", - "\n", - " self.input_ids.append(torch.tensor(encodings_dict['input_ids']))\n", - " self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))\n", - "\n", - " def __len__(self):\n", - " return len(self.input_ids)\n", - "\n", - " def __getitem__(self, idx):\n", - " return self.input_ids[idx], self.attn_masks[idx]\n", - "\n", - "dataset = InstructDataset(df.demonstrations.to_list(), tokenizer, max_length=max_length)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vSqKuRjIe8ru" - }, - "source": [ - "8. Create the `DataLoaders` and specify the `batch_size`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "cUkCNV-6v4gG" - }, - "outputs": [], - "source": [ - "from torch.utils.data import DataLoader, RandomSampler\n", - "\n", - "dataloader = DataLoader(\n", - " dataset,\n", - " sampler=RandomSampler(dataset),\n", - " batch_size=32\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0vxvcTIHe8rv" - }, - "source": [ - "9. Load the base model (`OPTForCausalLM`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 515, - "referenced_widgets": [ - "658885f8affc4372aeac134bc4ceeeae", - "6b587dfd543d4eb280dd8c3c5fb39712", - "549760c4f4d9407b904612000359baf1", - "5bc6ff6cd40843458291ac22695678ba", - "b274d32fff5a4339b4bdd0f7181aeb3c", - "cd7fbd6ca9b64119a4b72fd8adf9f5b9", - "075482761d3b4e80a2a28cb52bd9f62f", - "7f652b7f839446ef988926fa7d2821ed", - "65145bfc010641a38a2a7ade8b1831f2", - "e465630188a54c3ba6bc4060392351bb", - "834d037641824263a7dabef605187a59", - "c8e3a9feaeda4fe08046a1d1419efd7e", - "778e9dc19e094e868ba929ad0cacd3db", - "1080fcfac19a45ffb22f62d6614c7e56", - "7d7e8ee6c49c462280884bf40f5c478e", - "57f20cd66c22416489e8be9405976c9f", - "d62955e48e244d618876016d0a566082", - "3fe7b9c9b928458a90cc1193524edc50", - "9d62be996abb472c92ba164e54bd2a48", - "fc7413e1b4924e4c88231d36ffe5a6c2", - "380d538732d049dba1789d11f1747936", - "82aff6900df94061915fda3461ab1a19" - ] - }, - "id": "Rmg-5YJqv4gH", - "outputId": "941cb5be-2bf1-45a0-9f5a-204361f6ca06" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "658885f8affc4372aeac134bc4ceeeae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading pytorch_model.bin: 0%| | 0.00/251M [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import pandas as pd\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "\n", - "df_stats = pd.read_parquet(f\"{output_dir}/training_stats.parquet\")\n", - "\n", - "sns.set(style='darkgrid')\n", - "\n", - "sns.set(font_scale=1.5)\n", - "plt.rcParams[\"figure.figsize\"] = (12,6)\n", - "\n", - "plt.plot(df_stats['Training Loss'], 'b-o', label=\"Training\")\n", - "\n", - "plt.title(\"Training Loss\")\n", - "plt.xlabel(\"Epoch\")\n", - "plt.ylabel(\"Loss\")\n", - "plt.legend()\n", - "plt.xticks(range(1, len(df_stats)+1))\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 228, - "referenced_widgets": [ - "ad7218fcac074c29bf1f53a12f0551a0", - "eaf8426d4e5740dbbb0cab9239ab7c11", - "7367afa46d48458c822aef232c8ca09b", - "6212eac288cf45dbaed03e7da3efee34", - "d605f4039f3846038c374405a17b71af", - "492b4618b3294a7a814f894b4270ddd4", - "9542921618344a73913b864e4c0d45bb", - "5141ac3bd9e94f6e89303d2f78d82820", - "38da1b02e3694269b2245f707ee3f46b", - "d68dab9ac50c4c27babf5dfc6490533f", - "e493515b7def47d99ac4c2c324fd274e", - "52c769bd8e0b41da8f52ad21ad3162c4", - "9f3e7c305dc94c35b9cf82ac170a4b6e", - "1531707fd60b493d807cbc7651a8ed4e", - "559de5c737894973ab9f935875301eba", - "a1c6f87be7b94750934a2c95057ee007", - "2a15fdc2bca24c5d884f196410d2f6c8", - "1911dd3ee0ac4220b1b216ee858b7f92", - "cea320448f4e452b9d838e1f8b36f0dd", - "987f0957ab51423e8da3b7d5d13a78f0", - "3b7da0bfdf084c2a9dbcb6ae89c9a7c0", - "35d3c05794ab4bf59a7f4091ccc857eb", - "7a0fd29a22ba4538a976eae7a2837397", - "2c95e07fbcd64b66a7638788ab82261c", - "e4cb59a412394381bec7f30045e2c973", - "e76284b3fc604aedac4dd41bacd1063e", - "31256011039040f7b3b338c2a83ff033", - "332724c8441641639223f00c78281ee2", - "865b09efc47f4af98d33dcc2e94647a9", - "d3b142ae515b4c80a868c4d4a1bd186d", - "e0e66132eb584a86802b6635ea28394a", - "fed9344b077f4ffc9f994cfbcb8a641a", - "26b7638b38ac493b9dea79cfa0207bf6", - "1edd2a270baf4383a43075521cc33e32", - "e32b2ceb34b940f2b8743f0c392e01e2", - "5a79281fad5d4fa2bd5085368eed3c16", - "c6608cda90d94739abc15248f6337c70", - "28371209a2774f5e902f4c3f1545d179", - "b98c9e77e9f04caeb09149fce1fe1c64", - "1523d58d56784333833136ece05dd804", - "e134043751024ac1a877c8755a0f5b31", - "80b402aaaa8c41238d453f29057b3bc0", - "a29fa3c4623042c58d9beb1145de14f3", - "46e41ea9b1554582b514c94f6b407fc1", - "b1084c6d07174853881c5cdba4249975", - "7b1966a84f3f41e58247ba9530f85422", - "eff3bf09b31c4e1ebf06bb331e16350e", - "34b0086dcded4e97aa6452bad515c9e0", - "41361ae4e52d4f45afe6877a514c5a77", - "0aeb559b6daa412a9cf88e8c2bca8fb2", - "b0155092756f46c2b95f172c18abffcb", - "8901cc083787481e82bc6ae40423116c", - "86b888a53c4949bfb8fe09b0dab0e599", - "751fe7cc9bbe4aeaa301a9858a91f84c", - "1ba2d2a53bab40eab18928ffc3b8199c", - "b653a29a8d4e4778a41f30753fd2d1f2", - "df1c75df843e4605919ccc1e192e075b", - "0b133a5c042444948c42e2741b99d90e", - "695fdd2411f845c390b357ab6028b60c", - "45e5541d828a42c2839e1594d23a937a", - "9f79e50d0a45436aab5f904ab2942245", - "b2b0e287888a47eba1ac84384f19c052", - "996a5c4be80847219949459910e9bb9b", - "d16ec54b0a0f4d7fa7aafec8ab996adc", - "00e0375d1c7146bbb763cb2b31867eaa", - "0140d5560b1c4bf5a7f096cdb9b4b2ef" - ] - }, - "id": "qP1dGhg-PA4F", - "outputId": "a5dd1bfb-9481-4083-dc95-d4ae8f0e3c7c" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ad7218fcac074c29bf1f53a12f0551a0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "pytorch_model.bin: 0%| | 0.00/501M [00:00