--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner-thesis-dseb results: [] --- # xlm-roberta-base-finetuned-ner-thesis-dseb This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - Precision: 0.1786 - Recall: 0.1351 - F1: 0.1538 - Accuracy: 0.9563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8175 | 1.0 | 12 | 0.3119 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.2019 | 2.0 | 24 | 0.2414 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.1156 | 3.0 | 36 | 0.2105 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0913 | 4.0 | 48 | 0.1831 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0987 | 5.0 | 60 | 0.1695 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0697 | 6.0 | 72 | 0.1727 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0528 | 7.0 | 84 | 0.1462 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0538 | 8.0 | 96 | 0.1441 | 0.0 | 0.0 | 0.0 | 0.9593 | | 0.0504 | 9.0 | 108 | 0.1854 | 0.0 | 0.0 | 0.0 | 0.9605 | | 0.0359 | 10.0 | 120 | 0.1516 | 0.0476 | 0.0312 | 0.0377 | 0.9641 | | 0.031 | 11.0 | 132 | 0.1836 | 0.0 | 0.0 | 0.0 | 0.9621 | | 0.038 | 12.0 | 144 | 0.1581 | 0.1579 | 0.0938 | 0.1176 | 0.9627 | | 0.0349 | 13.0 | 156 | 0.1901 | 0.0 | 0.0 | 0.0 | 0.9625 | | 0.0226 | 14.0 | 168 | 0.1740 | 0.0667 | 0.0312 | 0.0426 | 0.9648 | | 0.0198 | 15.0 | 180 | 0.1729 | 0.125 | 0.0625 | 0.0833 | 0.9639 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1