Upload modeling_xlm_roberta.py
Browse files- modeling_xlm_roberta.py +1119 -0
modeling_xlm_roberta.py
ADDED
@@ -0,0 +1,1119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
|
2 |
+
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
+
# Copyright (c) 2022, Tri Dao.
|
4 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
5 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
6 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
7 |
+
|
8 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
+
|
10 |
+
import importlib.util
|
11 |
+
import logging
|
12 |
+
import re
|
13 |
+
from collections import OrderedDict
|
14 |
+
from collections.abc import Sequence
|
15 |
+
from functools import partial
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
from einops import rearrange
|
24 |
+
from transformers import PretrainedConfig
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
|
27 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
28 |
+
|
29 |
+
from transformers.models.bert.modeling_bert import (
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
BertForPreTrainingOutput,
|
32 |
+
)
|
33 |
+
|
34 |
+
from typing import List, Optional, Tuple, Union
|
35 |
+
|
36 |
+
from .xlm_padding import (
|
37 |
+
index_first_axis,
|
38 |
+
index_first_axis_residual,
|
39 |
+
pad_input,
|
40 |
+
unpad_input,
|
41 |
+
)
|
42 |
+
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
43 |
+
from .block import Block
|
44 |
+
from .embedding import XLMRobertaEmbeddings
|
45 |
+
from .mha import MHA
|
46 |
+
from .mlp import FusedMLP, Mlp
|
47 |
+
|
48 |
+
try:
|
49 |
+
from flash_attn.ops.fused_dense import FusedDense
|
50 |
+
except ImportError:
|
51 |
+
FusedDense = None
|
52 |
+
|
53 |
+
try:
|
54 |
+
from flash_attn.ops.triton.layer_norm import layer_norm_fn
|
55 |
+
except ImportError:
|
56 |
+
layer_norm_fn = None
|
57 |
+
|
58 |
+
|
59 |
+
try:
|
60 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
61 |
+
except ImportError:
|
62 |
+
CrossEntropyLoss = torch.nn.CrossEntropyLoss
|
63 |
+
|
64 |
+
try:
|
65 |
+
from tqdm.autonotebook import trange
|
66 |
+
except ImportError:
|
67 |
+
trange = None
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.getLogger(__name__)
|
71 |
+
|
72 |
+
|
73 |
+
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
74 |
+
if not getattr(config, "use_flash_attn", False):
|
75 |
+
return False
|
76 |
+
if not torch.cuda.is_available():
|
77 |
+
return False
|
78 |
+
if importlib.util.find_spec("flash_attn") is None:
|
79 |
+
logger.warning(
|
80 |
+
'flash_attn is not installed. Using PyTorch native attention implementation.'
|
81 |
+
)
|
82 |
+
return False
|
83 |
+
return True
|
84 |
+
|
85 |
+
|
86 |
+
def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
87 |
+
use_flash_attn = get_use_flash_attn(config)
|
88 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
89 |
+
|
90 |
+
mixer_cls = partial(
|
91 |
+
MHA,
|
92 |
+
num_heads=config.num_attention_heads,
|
93 |
+
cross_attn=cross_attn,
|
94 |
+
dropout=config.attention_probs_dropout_prob,
|
95 |
+
causal=False,
|
96 |
+
fused_bias_fc=fused_bias_fc,
|
97 |
+
use_flash_attn=use_flash_attn,
|
98 |
+
return_residual=return_residual,
|
99 |
+
)
|
100 |
+
return mixer_cls
|
101 |
+
|
102 |
+
|
103 |
+
def create_mlp_cls(config, layer_idx=None, return_residual=False):
|
104 |
+
inner_dim = config.intermediate_size
|
105 |
+
fused_mlp = getattr(config, "fused_mlp", False)
|
106 |
+
if fused_mlp:
|
107 |
+
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
|
108 |
+
"fused_mlp only " "supports approximate gelu"
|
109 |
+
)
|
110 |
+
if not fused_mlp:
|
111 |
+
approximate = (
|
112 |
+
"tanh"
|
113 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
114 |
+
else "none"
|
115 |
+
)
|
116 |
+
mlp_cls = partial(
|
117 |
+
Mlp,
|
118 |
+
hidden_features=inner_dim,
|
119 |
+
activation=partial(F.gelu, approximate=approximate),
|
120 |
+
return_residual=return_residual,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
if FusedMLP is None:
|
124 |
+
raise ImportError("fused_dense is not installed")
|
125 |
+
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
|
126 |
+
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
|
127 |
+
if isinstance(mlp_checkpoint_lvl, Sequence):
|
128 |
+
assert layer_idx is not None
|
129 |
+
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
|
130 |
+
mlp_cls = partial(
|
131 |
+
FusedMLP,
|
132 |
+
hidden_features=inner_dim,
|
133 |
+
checkpoint_lvl=mlp_checkpoint_lvl,
|
134 |
+
return_residual=return_residual,
|
135 |
+
)
|
136 |
+
return mlp_cls
|
137 |
+
|
138 |
+
|
139 |
+
def create_block(config, layer_idx=None):
|
140 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
141 |
+
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
|
142 |
+
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
|
143 |
+
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
|
144 |
+
# one layer) so we just choose not to return residual in this case.
|
145 |
+
return_residual = not cross_attn
|
146 |
+
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
|
147 |
+
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
|
148 |
+
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
|
149 |
+
block = Block(
|
150 |
+
config.hidden_size,
|
151 |
+
mixer_cls,
|
152 |
+
mlp_cls,
|
153 |
+
norm_cls=norm_cls,
|
154 |
+
prenorm=False,
|
155 |
+
resid_dropout1=config.hidden_dropout_prob,
|
156 |
+
resid_dropout2=config.hidden_dropout_prob,
|
157 |
+
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
|
158 |
+
return_residual=return_residual,
|
159 |
+
)
|
160 |
+
return block
|
161 |
+
|
162 |
+
|
163 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
164 |
+
def _init_weights(module, initializer_range=0.02):
|
165 |
+
if isinstance(module, nn.Linear):
|
166 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
167 |
+
if module.bias is not None:
|
168 |
+
nn.init.zeros_(module.bias)
|
169 |
+
elif isinstance(module, nn.Embedding):
|
170 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
171 |
+
if module.padding_idx is not None:
|
172 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
173 |
+
|
174 |
+
|
175 |
+
class XLMRobertaEncoder(nn.Module):
|
176 |
+
def __init__(self, config: XLMRobertaFlashConfig):
|
177 |
+
super().__init__()
|
178 |
+
self.use_flash_attn = get_use_flash_attn(config)
|
179 |
+
self.layers = nn.ModuleList(
|
180 |
+
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
181 |
+
)
|
182 |
+
self._grad_checkpointing = False
|
183 |
+
|
184 |
+
@property
|
185 |
+
def gradient_checkpointing(self):
|
186 |
+
return self._grad_checkpointing
|
187 |
+
|
188 |
+
@gradient_checkpointing.setter
|
189 |
+
def gradient_checkpointing(self, value):
|
190 |
+
self._grad_checkpointing = value
|
191 |
+
|
192 |
+
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
|
193 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
194 |
+
This means that we only compute the last layer output for these tokens.
|
195 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
196 |
+
"""
|
197 |
+
if key_padding_mask is None or not self.use_flash_attn:
|
198 |
+
mixer_kwargs = (
|
199 |
+
{"key_padding_mask": key_padding_mask.bool()}
|
200 |
+
if key_padding_mask is not None
|
201 |
+
else None
|
202 |
+
)
|
203 |
+
for layer in self.layers:
|
204 |
+
if self._grad_checkpointing:
|
205 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
206 |
+
layer,
|
207 |
+
hidden_states,
|
208 |
+
use_reentrant=False,
|
209 |
+
mixer_kwargs=mixer_kwargs,
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
213 |
+
if subset_mask is not None:
|
214 |
+
hidden_states = hidden_states[subset_mask]
|
215 |
+
else:
|
216 |
+
batch, seqlen = hidden_states.shape[:2]
|
217 |
+
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
|
218 |
+
hidden_states, key_padding_mask
|
219 |
+
)
|
220 |
+
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
|
221 |
+
if subset_mask is None:
|
222 |
+
for layer in self.layers:
|
223 |
+
if self._grad_checkpointing:
|
224 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
225 |
+
layer,
|
226 |
+
hidden_states,
|
227 |
+
use_reentrant=False,
|
228 |
+
mixer_kwargs=mixer_kwargs,
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
232 |
+
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
233 |
+
else:
|
234 |
+
for layer in self.layers[:-1]:
|
235 |
+
if self._grad_checkpointing:
|
236 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
237 |
+
layer,
|
238 |
+
hidden_states,
|
239 |
+
use_reentrant=False,
|
240 |
+
mixer_kwargs=mixer_kwargs,
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
244 |
+
if key_padding_mask is not None:
|
245 |
+
subset_idx = torch.nonzero(
|
246 |
+
subset_mask[key_padding_mask], as_tuple=False
|
247 |
+
).flatten()
|
248 |
+
subset_seqlens = (subset_mask & key_padding_mask).sum(
|
249 |
+
dim=-1, dtype=torch.int32
|
250 |
+
)
|
251 |
+
subset_cu_seqlens = F.pad(
|
252 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
|
253 |
+
(1, 0),
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
|
257 |
+
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
|
258 |
+
subset_cu_seqlens = F.pad(
|
259 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
|
260 |
+
(1, 0),
|
261 |
+
)
|
262 |
+
hidden_states_subset, hidden_states = index_first_axis_residual(
|
263 |
+
hidden_states, subset_idx
|
264 |
+
)
|
265 |
+
# It's ok to set max_seqlen_q to be much larger
|
266 |
+
mixer_kwargs = {
|
267 |
+
"x_kv": hidden_states,
|
268 |
+
"cu_seqlens": subset_cu_seqlens,
|
269 |
+
"max_seqlen": max_seqlen_in_batch,
|
270 |
+
"cu_seqlens_k": cu_seqlens,
|
271 |
+
"max_seqlen_k": max_seqlen_in_batch,
|
272 |
+
}
|
273 |
+
if self._grad_checkpointing:
|
274 |
+
torch.utils.checkpoint.checkpoint(
|
275 |
+
self.layers[-1],
|
276 |
+
hidden_states_subset,
|
277 |
+
use_reentrant=False,
|
278 |
+
mixer_kwargs=mixer_kwargs,
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
hidden_states = self.layers[-1](
|
282 |
+
hidden_states_subset, mixer_kwargs=mixer_kwargs
|
283 |
+
)
|
284 |
+
return hidden_states
|
285 |
+
|
286 |
+
|
287 |
+
class XLMRobertaPooler(nn.Module):
|
288 |
+
def __init__(self, config):
|
289 |
+
super().__init__()
|
290 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
291 |
+
if fused_bias_fc and FusedDense is None:
|
292 |
+
raise ImportError("fused_dense is not installed")
|
293 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
294 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
295 |
+
self.activation = nn.Tanh()
|
296 |
+
|
297 |
+
def forward(self, hidden_states, pool=True):
|
298 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
299 |
+
# to the first token.
|
300 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
301 |
+
pooled_output = self.dense(first_token_tensor)
|
302 |
+
pooled_output = self.activation(pooled_output)
|
303 |
+
return pooled_output
|
304 |
+
|
305 |
+
|
306 |
+
class XLMRobertaPredictionHeadTransform(nn.Module):
|
307 |
+
def __init__(self, config):
|
308 |
+
super().__init__()
|
309 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
310 |
+
if fused_bias_fc and FusedDense is None:
|
311 |
+
raise ImportError("fused_dense is not installed")
|
312 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
313 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
314 |
+
raise ImportError("Triton is not installed")
|
315 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
316 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
317 |
+
approximate = (
|
318 |
+
"tanh"
|
319 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
320 |
+
else "none"
|
321 |
+
)
|
322 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
323 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
324 |
+
|
325 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
326 |
+
hidden_states = self.dense(hidden_states)
|
327 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
328 |
+
if not self.fused_dropout_add_ln:
|
329 |
+
hidden_states = self.layer_norm(hidden_states)
|
330 |
+
else:
|
331 |
+
hidden_states = layer_norm_fn(
|
332 |
+
hidden_states,
|
333 |
+
self.layer_norm.weight,
|
334 |
+
self.layer_norm.bias,
|
335 |
+
eps=self.layer_norm.eps,
|
336 |
+
)
|
337 |
+
return hidden_states
|
338 |
+
|
339 |
+
|
340 |
+
class XLMRobertaLMPredictionHead(nn.Module):
|
341 |
+
def __init__(self, config):
|
342 |
+
super().__init__()
|
343 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
344 |
+
if fused_bias_fc and FusedDense is None:
|
345 |
+
raise ImportError("fused_dense is not installed")
|
346 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
347 |
+
|
348 |
+
self.transform = XLMRobertaPredictionHeadTransform(config)
|
349 |
+
|
350 |
+
# The output weights are the same as the input embeddings, but there is
|
351 |
+
# an output-only bias for each token.
|
352 |
+
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
|
353 |
+
|
354 |
+
def forward(self, hidden_states):
|
355 |
+
hidden_states = self.transform(hidden_states)
|
356 |
+
hidden_states = self.decoder(hidden_states)
|
357 |
+
return hidden_states
|
358 |
+
|
359 |
+
|
360 |
+
class XLMRobertaPreTrainingHeads(nn.Module):
|
361 |
+
def __init__(self, config):
|
362 |
+
super().__init__()
|
363 |
+
self.predictions = XLMRobertaLMPredictionHead(config)
|
364 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
365 |
+
|
366 |
+
def forward(self, sequence_output, pooled_output):
|
367 |
+
prediction_scores = self.predictions(sequence_output)
|
368 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
369 |
+
return prediction_scores, seq_relationship_score
|
370 |
+
|
371 |
+
|
372 |
+
class XLMRobertaPreTrainedModel(PreTrainedModel):
|
373 |
+
"""An abstract class to handle weights initialization and
|
374 |
+
a simple interface for dowloading and loading pretrained models.
|
375 |
+
"""
|
376 |
+
|
377 |
+
config_class = XLMRobertaFlashConfig
|
378 |
+
base_model_prefix = "roberta"
|
379 |
+
supports_gradient_checkpointing = True
|
380 |
+
|
381 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
382 |
+
if isinstance(module, XLMRobertaEncoder):
|
383 |
+
module.gradient_checkpointing = value
|
384 |
+
|
385 |
+
@classmethod
|
386 |
+
def from_pretrained(
|
387 |
+
cls,
|
388 |
+
*args,
|
389 |
+
**kwargs,
|
390 |
+
):
|
391 |
+
if not 'torch_dtype' in kwargs:
|
392 |
+
kwargs['torch_dtype'] = 'auto'
|
393 |
+
return super().from_pretrained(*args, **kwargs)
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
398 |
+
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
|
399 |
+
super().__init__(config)
|
400 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
401 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
402 |
+
config.vocab_size += self.pad_vocab_size_multiple - (
|
403 |
+
config.vocab_size % self.pad_vocab_size_multiple
|
404 |
+
)
|
405 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
406 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
407 |
+
raise ImportError("Triton is not installed")
|
408 |
+
assert config.hidden_act in [
|
409 |
+
"gelu",
|
410 |
+
"gelu_new",
|
411 |
+
"gelu_fast",
|
412 |
+
"gelu_pytorch_tanh",
|
413 |
+
]
|
414 |
+
|
415 |
+
self.embeddings = XLMRobertaEmbeddings(
|
416 |
+
config.hidden_size,
|
417 |
+
config.vocab_size,
|
418 |
+
config.max_position_embeddings if config.position_embedding_type == 'absolute' else -1,
|
419 |
+
config.type_vocab_size,
|
420 |
+
padding_idx=config.pad_token_id,
|
421 |
+
)
|
422 |
+
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
|
423 |
+
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
424 |
+
self.encoder = XLMRobertaEncoder(config)
|
425 |
+
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
|
426 |
+
|
427 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
428 |
+
|
429 |
+
|
430 |
+
@torch.inference_mode()
|
431 |
+
def encode(
|
432 |
+
self: 'XLMRobertaModel',
|
433 |
+
sentences: Union[str, List[str]],
|
434 |
+
batch_size: int = 32,
|
435 |
+
show_progress_bar: Optional[bool] = None,
|
436 |
+
output_value: str = 'sentence_embedding',
|
437 |
+
convert_to_numpy: bool = True,
|
438 |
+
convert_to_tensor: bool = False,
|
439 |
+
device: Optional[torch.device] = None,
|
440 |
+
normalize_embeddings: bool = False,
|
441 |
+
truncate_dim: Optional[int] = None,
|
442 |
+
**tokenizer_kwargs,
|
443 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
444 |
+
"""
|
445 |
+
Computes sentence embeddings
|
446 |
+
Args:
|
447 |
+
sentences(`str` or `List[str]`):
|
448 |
+
Sentence or sentences to be encoded
|
449 |
+
batch_size(`int`, *optional*, defaults to 32):
|
450 |
+
Batch size for the computation
|
451 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
452 |
+
Show a progress bar when encoding sentences.
|
453 |
+
If set to None, progress bar is only shown when
|
454 |
+
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
|
455 |
+
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
|
456 |
+
Default sentence_embedding, to get sentence embeddings.
|
457 |
+
Can be set to token_embeddings to get wordpiece token embeddings.
|
458 |
+
Set to None, to get all output values
|
459 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
460 |
+
If true, the output is a list of numpy vectors.
|
461 |
+
Else, it is a list of pytorch tensors.
|
462 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
463 |
+
If true, you get one large tensor as return.
|
464 |
+
Overwrites any setting from convert_to_numpy
|
465 |
+
device(`torch.device`, *optional*, defaults to None):
|
466 |
+
Which torch.device to use for the computation
|
467 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
468 |
+
If set to true, returned vectors will have length 1. In that case, the
|
469 |
+
faster dot-product (util.dot_score) instead of cosine similarity can
|
470 |
+
be used.
|
471 |
+
truncate_dim(`int`, *optional*, defaults to None):
|
472 |
+
The dimension to truncate sentence embeddings to. `None` does no truncation.
|
473 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
474 |
+
Keyword arguments for the tokenizer
|
475 |
+
Returns:
|
476 |
+
By default, a list of tensors is returned.
|
477 |
+
If convert_to_tensor, a stacked tensor is returned.
|
478 |
+
If convert_to_numpy, a numpy matrix is returned.
|
479 |
+
"""
|
480 |
+
from transformers import AutoTokenizer
|
481 |
+
|
482 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
483 |
+
self.name_or_path, trust_remote_code=True
|
484 |
+
)
|
485 |
+
|
486 |
+
is_training = self.training
|
487 |
+
self.eval()
|
488 |
+
|
489 |
+
if show_progress_bar is None:
|
490 |
+
show_progress_bar = (
|
491 |
+
logger.getEffectiveLevel() == logging.INFO
|
492 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
493 |
+
)
|
494 |
+
|
495 |
+
if convert_to_tensor:
|
496 |
+
convert_to_numpy = False
|
497 |
+
|
498 |
+
if output_value != 'sentence_embedding':
|
499 |
+
convert_to_tensor = False
|
500 |
+
convert_to_numpy = False
|
501 |
+
|
502 |
+
input_was_string = False
|
503 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
504 |
+
sentences = [sentences]
|
505 |
+
input_was_string = True
|
506 |
+
|
507 |
+
if device is not None:
|
508 |
+
self.to(device)
|
509 |
+
|
510 |
+
permutation = np.argsort([-len(i) for i in sentences])
|
511 |
+
inverse_permutation = np.argsort(permutation)
|
512 |
+
sentences = [sentences[idx] for idx in permutation]
|
513 |
+
|
514 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
515 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get(
|
516 |
+
'max_length', self.tokenizer.init_kwargs.get('model_max_length', 8192)
|
517 |
+
)
|
518 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
519 |
+
|
520 |
+
all_embeddings = []
|
521 |
+
|
522 |
+
if trange is not None:
|
523 |
+
range_iter = trange(
|
524 |
+
0,
|
525 |
+
len(sentences),
|
526 |
+
batch_size,
|
527 |
+
desc="Encoding",
|
528 |
+
disable=not show_progress_bar,
|
529 |
+
)
|
530 |
+
else:
|
531 |
+
range_iter = range(0, len(sentences), batch_size)
|
532 |
+
|
533 |
+
for i in range_iter:
|
534 |
+
encoded_input = self.tokenizer(
|
535 |
+
sentences[i : i + batch_size],
|
536 |
+
return_tensors='pt',
|
537 |
+
**tokenizer_kwargs,
|
538 |
+
).to(self.device)
|
539 |
+
token_embs = self.forward(**encoded_input)[0]
|
540 |
+
|
541 |
+
# Accumulate in fp32 to avoid overflow
|
542 |
+
token_embs = token_embs.float()
|
543 |
+
|
544 |
+
if output_value == 'token_embeddings':
|
545 |
+
raise NotImplementedError
|
546 |
+
elif output_value is None:
|
547 |
+
raise NotImplementedError
|
548 |
+
else:
|
549 |
+
if self.config.emb_pooler == 'cls':
|
550 |
+
embeddings = self.cls_pooling(
|
551 |
+
token_embs, encoded_input['attention_mask']
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
embeddings = self.mean_pooling(
|
555 |
+
token_embs, encoded_input['attention_mask']
|
556 |
+
)
|
557 |
+
|
558 |
+
if normalize_embeddings:
|
559 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
560 |
+
|
561 |
+
if convert_to_numpy:
|
562 |
+
embeddings = embeddings.cpu()
|
563 |
+
all_embeddings.extend(embeddings)
|
564 |
+
|
565 |
+
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
566 |
+
|
567 |
+
truncate_dim = truncate_dim or self.config.truncate_dim
|
568 |
+
if truncate_dim:
|
569 |
+
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim)
|
570 |
+
|
571 |
+
if convert_to_tensor:
|
572 |
+
all_embeddings = torch.stack(all_embeddings)
|
573 |
+
elif convert_to_numpy:
|
574 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
575 |
+
|
576 |
+
if input_was_string:
|
577 |
+
all_embeddings = all_embeddings[0]
|
578 |
+
|
579 |
+
self.train(is_training)
|
580 |
+
return all_embeddings
|
581 |
+
|
582 |
+
|
583 |
+
def truncate_embeddings(self, embeddings, truncate_dim):
|
584 |
+
if not self.config.matryoshka_dimensions:
|
585 |
+
logger.warning(
|
586 |
+
'Matryoshka embeddings are not supported, so dimension truncation will not be performed.'
|
587 |
+
)
|
588 |
+
return embeddings
|
589 |
+
elif truncate_dim in self.config.matryoshka_dimensions:
|
590 |
+
return [tensor[:truncate_dim] for tensor in embeddings]
|
591 |
+
else:
|
592 |
+
raise ValueError(f'The provided `truncate_dim` value of {truncate_dim} is not supported. '
|
593 |
+
f'Supported dimensions are {self.config.matryoshka_dimensions}.')
|
594 |
+
|
595 |
+
def mean_pooling(
|
596 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
597 |
+
):
|
598 |
+
input_mask_expanded = (
|
599 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
600 |
+
)
|
601 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
602 |
+
input_mask_expanded.sum(1), min=1e-9
|
603 |
+
)
|
604 |
+
|
605 |
+
|
606 |
+
def cls_pooling(
|
607 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
608 |
+
):
|
609 |
+
return token_embeddings[:,0]
|
610 |
+
|
611 |
+
|
612 |
+
def forward(
|
613 |
+
self,
|
614 |
+
input_ids,
|
615 |
+
position_ids=None,
|
616 |
+
token_type_ids=None,
|
617 |
+
attention_mask=None,
|
618 |
+
masked_tokens_mask=None,
|
619 |
+
return_dict=None,
|
620 |
+
**kwargs,
|
621 |
+
):
|
622 |
+
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
|
623 |
+
we only want the output for the masked tokens. This means that we only compute the last
|
624 |
+
layer output for these tokens.
|
625 |
+
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
626 |
+
"""
|
627 |
+
|
628 |
+
if kwargs:
|
629 |
+
for key, value in kwargs.items():
|
630 |
+
if value is not None:
|
631 |
+
logger.warning(
|
632 |
+
'Flash attention implementation does not support kwargs: %s',
|
633 |
+
key,
|
634 |
+
)
|
635 |
+
|
636 |
+
return_dict = (
|
637 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
638 |
+
)
|
639 |
+
|
640 |
+
hidden_states = self.embeddings(
|
641 |
+
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
|
642 |
+
)
|
643 |
+
# TD [2022-12:18]: Don't need to force residual in fp32
|
644 |
+
# BERT puts embedding LayerNorm before embedding dropout.
|
645 |
+
if not self.fused_dropout_add_ln:
|
646 |
+
hidden_states = self.emb_ln(hidden_states)
|
647 |
+
else:
|
648 |
+
hidden_states = layer_norm_fn(
|
649 |
+
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
|
650 |
+
)
|
651 |
+
hidden_states = self.emb_drop(hidden_states)
|
652 |
+
|
653 |
+
if masked_tokens_mask is not None:
|
654 |
+
batch_size, seqlen = input_ids.shape[:2]
|
655 |
+
# We also need the first column for the CLS token
|
656 |
+
first_col_mask = torch.zeros(
|
657 |
+
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
|
658 |
+
)
|
659 |
+
first_col_mask[:, 0] = True
|
660 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
661 |
+
else:
|
662 |
+
subset_mask = None
|
663 |
+
|
664 |
+
sequence_output = self.encoder(
|
665 |
+
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
|
666 |
+
)
|
667 |
+
|
668 |
+
if masked_tokens_mask is None:
|
669 |
+
pooled_output = (
|
670 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
674 |
+
if attention_mask is not None:
|
675 |
+
subset_idx = subset_mask[attention_mask]
|
676 |
+
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
|
677 |
+
sequence_output = sequence_output[
|
678 |
+
masked_tokens_mask[attention_mask][subset_idx]
|
679 |
+
]
|
680 |
+
else:
|
681 |
+
pool_input = sequence_output[first_col_mask[subset_mask]]
|
682 |
+
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
683 |
+
pooled_output = (
|
684 |
+
self.pooler(pool_input, pool=False) if self.pooler is not None else None
|
685 |
+
)
|
686 |
+
|
687 |
+
if not return_dict:
|
688 |
+
return sequence_output, pooled_output
|
689 |
+
|
690 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
691 |
+
last_hidden_state=sequence_output,
|
692 |
+
pooler_output=pooled_output,
|
693 |
+
)
|
694 |
+
|
695 |
+
|
696 |
+
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel):
|
697 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
698 |
+
|
699 |
+
def __init__(self, config):
|
700 |
+
super().__init__(config)
|
701 |
+
|
702 |
+
if config.is_decoder:
|
703 |
+
logger.warning(
|
704 |
+
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
705 |
+
"bi-directional self-attention."
|
706 |
+
)
|
707 |
+
|
708 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
709 |
+
self.lm_head = XLMRobertaLMHead(config)
|
710 |
+
|
711 |
+
# Initialize weights and apply final processing
|
712 |
+
self.post_init()
|
713 |
+
|
714 |
+
def get_input_embeddings(self):
|
715 |
+
return self.roberta.embeddings.word_embeddings
|
716 |
+
|
717 |
+
def get_output_embeddings(self):
|
718 |
+
return self.lm_head.decoder
|
719 |
+
|
720 |
+
def set_output_embeddings(self, new_embeddings):
|
721 |
+
self.lm_head.decoder = new_embeddings
|
722 |
+
|
723 |
+
def forward(
|
724 |
+
self,
|
725 |
+
input_ids: Optional[torch.LongTensor] = None,
|
726 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
727 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
728 |
+
position_ids: Optional[torch.LongTensor] = None,
|
729 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
730 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
731 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
732 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
733 |
+
labels: Optional[torch.LongTensor] = None,
|
734 |
+
output_attentions: Optional[bool] = None,
|
735 |
+
output_hidden_states: Optional[bool] = None,
|
736 |
+
return_dict: Optional[bool] = None,
|
737 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
738 |
+
r"""
|
739 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
740 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
741 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
742 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
743 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
744 |
+
Used to hide legacy arguments that have been deprecated.
|
745 |
+
"""
|
746 |
+
return_dict = (
|
747 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
748 |
+
)
|
749 |
+
|
750 |
+
outputs = self.roberta(
|
751 |
+
input_ids,
|
752 |
+
attention_mask=attention_mask,
|
753 |
+
token_type_ids=token_type_ids,
|
754 |
+
position_ids=position_ids,
|
755 |
+
head_mask=head_mask,
|
756 |
+
inputs_embeds=inputs_embeds,
|
757 |
+
encoder_hidden_states=encoder_hidden_states,
|
758 |
+
encoder_attention_mask=encoder_attention_mask,
|
759 |
+
output_attentions=output_attentions,
|
760 |
+
output_hidden_states=output_hidden_states,
|
761 |
+
return_dict=return_dict,
|
762 |
+
)
|
763 |
+
sequence_output = outputs[0]
|
764 |
+
prediction_scores = self.lm_head(sequence_output)
|
765 |
+
|
766 |
+
masked_lm_loss = None
|
767 |
+
if labels is not None:
|
768 |
+
# move labels to correct device to enable model parallelism
|
769 |
+
labels = labels.to(prediction_scores.device)
|
770 |
+
loss_fct = CrossEntropyLoss()
|
771 |
+
masked_lm_loss = loss_fct(
|
772 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
773 |
+
)
|
774 |
+
|
775 |
+
if not return_dict:
|
776 |
+
output = (prediction_scores,) + outputs[2:]
|
777 |
+
return (
|
778 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
779 |
+
)
|
780 |
+
|
781 |
+
return MaskedLMOutput(
|
782 |
+
loss=masked_lm_loss,
|
783 |
+
logits=prediction_scores,
|
784 |
+
hidden_states=outputs.hidden_states,
|
785 |
+
attentions=outputs.attentions,
|
786 |
+
)
|
787 |
+
|
788 |
+
|
789 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
790 |
+
class XLMRobertaClassificationHead(nn.Module):
|
791 |
+
"""Head for sentence-level classification tasks."""
|
792 |
+
|
793 |
+
def __init__(self, config):
|
794 |
+
super().__init__()
|
795 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
796 |
+
if fused_bias_fc and FusedDense is None:
|
797 |
+
raise ImportError("fused_dense is not installed")
|
798 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
799 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
800 |
+
classifier_dropout = (
|
801 |
+
config.classifier_dropout
|
802 |
+
if config.classifier_dropout is not None
|
803 |
+
else config.hidden_dropout_prob
|
804 |
+
)
|
805 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
806 |
+
self.out_proj = linear_cls(config.hidden_size, config.num_labels)
|
807 |
+
|
808 |
+
def forward(self, features, **kwargs):
|
809 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
810 |
+
x = self.dropout(x)
|
811 |
+
x = self.dense(x)
|
812 |
+
x = torch.tanh(x)
|
813 |
+
x = self.dropout(x)
|
814 |
+
x = self.out_proj(x)
|
815 |
+
return x
|
816 |
+
|
817 |
+
|
818 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
819 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
820 |
+
def __init__(self, config):
|
821 |
+
super().__init__(config)
|
822 |
+
self.num_labels = config.num_labels
|
823 |
+
self.config = config
|
824 |
+
|
825 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
826 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
827 |
+
|
828 |
+
# Initialize weights and apply final processing
|
829 |
+
self.post_init()
|
830 |
+
|
831 |
+
def forward(
|
832 |
+
self,
|
833 |
+
input_ids: Optional[torch.LongTensor] = None,
|
834 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
835 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
836 |
+
position_ids: Optional[torch.LongTensor] = None,
|
837 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
838 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
839 |
+
labels: Optional[torch.LongTensor] = None,
|
840 |
+
output_attentions: Optional[bool] = None,
|
841 |
+
output_hidden_states: Optional[bool] = None,
|
842 |
+
return_dict: Optional[bool] = None,
|
843 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
844 |
+
r"""
|
845 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
846 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
847 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
848 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
849 |
+
"""
|
850 |
+
return_dict = (
|
851 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
852 |
+
)
|
853 |
+
|
854 |
+
outputs = self.roberta(
|
855 |
+
input_ids,
|
856 |
+
attention_mask=attention_mask,
|
857 |
+
token_type_ids=token_type_ids,
|
858 |
+
position_ids=position_ids,
|
859 |
+
head_mask=head_mask,
|
860 |
+
inputs_embeds=inputs_embeds,
|
861 |
+
output_attentions=output_attentions,
|
862 |
+
output_hidden_states=output_hidden_states,
|
863 |
+
return_dict=return_dict,
|
864 |
+
)
|
865 |
+
sequence_output = outputs[0]
|
866 |
+
logits = self.classifier(sequence_output)
|
867 |
+
|
868 |
+
loss = None
|
869 |
+
if labels is not None:
|
870 |
+
# move labels to correct device to enable model parallelism
|
871 |
+
labels = labels.to(logits.device)
|
872 |
+
if self.config.problem_type is None:
|
873 |
+
if self.num_labels == 1:
|
874 |
+
self.config.problem_type = "regression"
|
875 |
+
elif self.num_labels > 1 and (
|
876 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
877 |
+
):
|
878 |
+
self.config.problem_type = "single_label_classification"
|
879 |
+
else:
|
880 |
+
self.config.problem_type = "multi_label_classification"
|
881 |
+
|
882 |
+
if self.config.problem_type == "regression":
|
883 |
+
loss_fct = MSELoss()
|
884 |
+
if self.num_labels == 1:
|
885 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
886 |
+
else:
|
887 |
+
loss = loss_fct(logits, labels)
|
888 |
+
elif self.config.problem_type == "single_label_classification":
|
889 |
+
loss_fct = CrossEntropyLoss()
|
890 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
891 |
+
elif self.config.problem_type == "multi_label_classification":
|
892 |
+
loss_fct = BCEWithLogitsLoss()
|
893 |
+
loss = loss_fct(logits, labels)
|
894 |
+
|
895 |
+
if not return_dict:
|
896 |
+
output = (logits,) + outputs[2:]
|
897 |
+
return ((loss,) + output) if loss is not None else output
|
898 |
+
|
899 |
+
return SequenceClassifierOutput(
|
900 |
+
loss=loss,
|
901 |
+
logits=logits,
|
902 |
+
hidden_states=outputs.hidden_states,
|
903 |
+
attentions=outputs.attentions,
|
904 |
+
)
|
905 |
+
|
906 |
+
|
907 |
+
@torch.inference_mode()
|
908 |
+
def compute_score(
|
909 |
+
self,
|
910 |
+
sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
|
911 |
+
batch_size: int = 32,
|
912 |
+
max_length: Optional[int] = None,
|
913 |
+
) -> List[float]:
|
914 |
+
|
915 |
+
if not hasattr(self, "_tokenizer"):
|
916 |
+
from transformers import AutoTokenizer
|
917 |
+
|
918 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
919 |
+
self.name_or_path, trust_remote_code=True
|
920 |
+
)
|
921 |
+
|
922 |
+
assert isinstance(sentence_pairs, list)
|
923 |
+
if isinstance(sentence_pairs[0], str):
|
924 |
+
sentence_pairs = [sentence_pairs]
|
925 |
+
|
926 |
+
all_scores = []
|
927 |
+
for start_index in range(
|
928 |
+
0, len(sentence_pairs), batch_size
|
929 |
+
):
|
930 |
+
sentences_batch = sentence_pairs[
|
931 |
+
start_index : start_index + batch_size
|
932 |
+
]
|
933 |
+
inputs = self._tokenizer(
|
934 |
+
sentences_batch,
|
935 |
+
padding=True,
|
936 |
+
truncation=True,
|
937 |
+
return_tensors='pt',
|
938 |
+
max_length=max_length,
|
939 |
+
).to(self.device)
|
940 |
+
scores = (
|
941 |
+
self.forward(**inputs, return_dict=True)
|
942 |
+
.logits.view(
|
943 |
+
-1,
|
944 |
+
)
|
945 |
+
.float()
|
946 |
+
)
|
947 |
+
scores = torch.sigmoid(scores)
|
948 |
+
all_scores.extend(scores.cpu().numpy().tolist())
|
949 |
+
|
950 |
+
if len(all_scores) == 1:
|
951 |
+
return all_scores[0]
|
952 |
+
return all_scores
|
953 |
+
|
954 |
+
def predict(
|
955 |
+
self,
|
956 |
+
sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
|
957 |
+
batch_size: int = 32,
|
958 |
+
max_length: Optional[int] = None,
|
959 |
+
) -> List[float]:
|
960 |
+
# used for beir evaluation
|
961 |
+
return self.compute_score(sentence_pairs, batch_size=batch_size, max_length=max_length)
|
962 |
+
|
963 |
+
def rerank(
|
964 |
+
self,
|
965 |
+
query: str,
|
966 |
+
documents: List[str],
|
967 |
+
batch_size: int = 32,
|
968 |
+
max_length: int = 1024,
|
969 |
+
max_query_length: int = 512,
|
970 |
+
overlap_tokens: int = 80,
|
971 |
+
top_n: Optional[int] = None,
|
972 |
+
**kwargs,
|
973 |
+
):
|
974 |
+
assert max_length >= max_query_length * 2, (
|
975 |
+
f'max_length ({max_length}) must be greater than or equal to '
|
976 |
+
f'max_query_length ({max_query_length}) * 2'
|
977 |
+
)
|
978 |
+
|
979 |
+
if not hasattr(self, "_tokenizer"):
|
980 |
+
from transformers import AutoTokenizer
|
981 |
+
|
982 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
983 |
+
self.name_or_path, trust_remote_code=True
|
984 |
+
)
|
985 |
+
|
986 |
+
# preproc of tokenization
|
987 |
+
sentence_pairs, sentence_pairs_pids = reranker_tokenize_preproc(
|
988 |
+
query,
|
989 |
+
documents,
|
990 |
+
tokenizer=self._tokenizer,
|
991 |
+
max_length=max_length,
|
992 |
+
max_query_length=max_query_length,
|
993 |
+
overlap_tokens=overlap_tokens,
|
994 |
+
)
|
995 |
+
|
996 |
+
tot_scores = []
|
997 |
+
with torch.no_grad():
|
998 |
+
for k in range(0, len(sentence_pairs), batch_size):
|
999 |
+
batch = self._tokenizer.pad(
|
1000 |
+
sentence_pairs[k : k + batch_size],
|
1001 |
+
padding=True,
|
1002 |
+
max_length=max_length,
|
1003 |
+
pad_to_multiple_of=None,
|
1004 |
+
return_tensors="pt",
|
1005 |
+
)
|
1006 |
+
batch_on_device = {k: v.to(self.device) for k, v in batch.items()}
|
1007 |
+
scores = (
|
1008 |
+
self.forward(**batch_on_device, return_dict=True)
|
1009 |
+
.logits.view(
|
1010 |
+
-1,
|
1011 |
+
)
|
1012 |
+
.float()
|
1013 |
+
)
|
1014 |
+
scores = torch.sigmoid(scores)
|
1015 |
+
tot_scores.extend(scores.cpu().numpy().tolist())
|
1016 |
+
|
1017 |
+
# ranking
|
1018 |
+
merge_scores = [0 for _ in range(len(documents))]
|
1019 |
+
for pid, score in zip(sentence_pairs_pids, tot_scores):
|
1020 |
+
merge_scores[pid] = max(merge_scores[pid], score)
|
1021 |
+
|
1022 |
+
merge_scores_argsort = np.argsort(merge_scores)[::-1]
|
1023 |
+
sorted_documents = []
|
1024 |
+
sorted_scores = []
|
1025 |
+
for mid in merge_scores_argsort:
|
1026 |
+
sorted_scores.append(merge_scores[mid])
|
1027 |
+
sorted_documents.append(documents[mid])
|
1028 |
+
|
1029 |
+
top_n = min(top_n or len(sorted_documents), len(sorted_documents))
|
1030 |
+
|
1031 |
+
return [
|
1032 |
+
{
|
1033 |
+
'document': sorted_documents[i],
|
1034 |
+
'relevance_score': sorted_scores[i],
|
1035 |
+
'index': merge_scores_argsort[i],
|
1036 |
+
}
|
1037 |
+
for i in range(top_n)
|
1038 |
+
]
|
1039 |
+
|
1040 |
+
|
1041 |
+
def reranker_tokenize_preproc(
|
1042 |
+
query: str,
|
1043 |
+
passages: List[str],
|
1044 |
+
tokenizer=None,
|
1045 |
+
max_length: int = 1024,
|
1046 |
+
max_query_length: int = 512,
|
1047 |
+
overlap_tokens: int = 80,
|
1048 |
+
):
|
1049 |
+
from copy import deepcopy
|
1050 |
+
|
1051 |
+
assert tokenizer is not None, "Please provide a valid tokenizer for tokenization!"
|
1052 |
+
sep_id = tokenizer.sep_token_id
|
1053 |
+
|
1054 |
+
def _merge_inputs(chunk1_raw, chunk2):
|
1055 |
+
chunk1 = deepcopy(chunk1_raw)
|
1056 |
+
chunk1['input_ids'].append(sep_id)
|
1057 |
+
chunk1['input_ids'].extend(chunk2['input_ids'])
|
1058 |
+
chunk1['input_ids'].append(sep_id)
|
1059 |
+
chunk1['attention_mask'].append(chunk2['attention_mask'][0])
|
1060 |
+
chunk1['attention_mask'].extend(chunk2['attention_mask'])
|
1061 |
+
chunk1['attention_mask'].append(chunk2['attention_mask'][-1])
|
1062 |
+
if 'token_type_ids' in chunk1:
|
1063 |
+
token_type_ids = [1 for _ in range(len(chunk2['token_type_ids']) + 2)]
|
1064 |
+
chunk1['token_type_ids'].extend(token_type_ids)
|
1065 |
+
return chunk1
|
1066 |
+
|
1067 |
+
# Note: the long query will be truncated to 256 tokens by default
|
1068 |
+
query_inputs = tokenizer.encode_plus(
|
1069 |
+
query, truncation=True, padding=False, max_length=max_query_length
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
max_passage_inputs_length = max_length - len(query_inputs['input_ids']) - 2
|
1073 |
+
# assert (
|
1074 |
+
# max_passage_inputs_length > 100
|
1075 |
+
# ), "Your query is too long! Please make sure your query less than 500 tokens!"
|
1076 |
+
|
1077 |
+
overlap_tokens_implt = min(overlap_tokens, max_passage_inputs_length // 4)
|
1078 |
+
|
1079 |
+
res_merge_inputs = []
|
1080 |
+
res_merge_inputs_pids = []
|
1081 |
+
for pid, passage in enumerate(passages):
|
1082 |
+
passage_inputs = tokenizer.encode_plus(
|
1083 |
+
passage,
|
1084 |
+
truncation=False,
|
1085 |
+
padding=False,
|
1086 |
+
add_special_tokens=False,
|
1087 |
+
max_length=0,
|
1088 |
+
)
|
1089 |
+
passage_inputs_length = len(passage_inputs['input_ids'])
|
1090 |
+
|
1091 |
+
if passage_inputs_length <= max_passage_inputs_length:
|
1092 |
+
qp_merge_inputs = _merge_inputs(query_inputs, passage_inputs)
|
1093 |
+
res_merge_inputs.append(qp_merge_inputs)
|
1094 |
+
res_merge_inputs_pids.append(pid)
|
1095 |
+
else:
|
1096 |
+
start_id = 0
|
1097 |
+
while start_id < passage_inputs_length:
|
1098 |
+
end_id = start_id + max_passage_inputs_length
|
1099 |
+
# make sure the length of the last chunk is `max_passage_inputs_length`
|
1100 |
+
if end_id >= passage_inputs_length:
|
1101 |
+
sub_passage_inputs = {
|
1102 |
+
k: v[-max_passage_inputs_length:]
|
1103 |
+
for k, v in passage_inputs.items()
|
1104 |
+
}
|
1105 |
+
else:
|
1106 |
+
sub_passage_inputs = {
|
1107 |
+
k: v[start_id:end_id] for k, v in passage_inputs.items()
|
1108 |
+
}
|
1109 |
+
start_id = (
|
1110 |
+
end_id - overlap_tokens_implt
|
1111 |
+
if end_id < passage_inputs_length
|
1112 |
+
else end_id
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
qp_merge_inputs = _merge_inputs(query_inputs, sub_passage_inputs)
|
1116 |
+
res_merge_inputs.append(qp_merge_inputs)
|
1117 |
+
res_merge_inputs_pids.append(pid)
|
1118 |
+
|
1119 |
+
return res_merge_inputs, res_merge_inputs_pids
|