--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3834 - Precision: 0.8310 - Recall: 0.8708 - F1 and accuracy: {'accuracy': 0.7877237851662404, 'f1': 0.8504504504504504} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 and accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:----------------------------------------------------------:| | No log | 1.0 | 391 | 0.5803 | 0.7346 | 0.9705 | {'accuracy': 0.7365728900255755, 'f1': 0.836248012718601} | | 0.5606 | 2.0 | 782 | 0.5085 | 0.8259 | 0.8229 | {'accuracy': 0.7570332480818415, 'f1': 0.8243992606284658} | | 0.4687 | 3.0 | 1173 | 0.6925 | 0.8007 | 0.8745 | {'accuracy': 0.7621483375959079, 'f1': 0.8359788359788359} | | 0.3603 | 4.0 | 1564 | 0.8182 | 0.7955 | 0.9188 | {'accuracy': 0.7800511508951407, 'f1': 0.8527397260273973} | | 0.3603 | 5.0 | 1955 | 0.8375 | 0.8413 | 0.8413 | {'accuracy': 0.7800511508951407, 'f1': 0.8413284132841329} | | 0.2736 | 6.0 | 2346 | 1.0186 | 0.8235 | 0.8782 | {'accuracy': 0.7851662404092071, 'f1': 0.8500000000000001} | | 0.1993 | 7.0 | 2737 | 1.1566 | 0.8224 | 0.9225 | {'accuracy': 0.8081841432225064, 'f1': 0.8695652173913043} | | 0.1491 | 8.0 | 3128 | 1.2136 | 0.8502 | 0.8376 | {'accuracy': 0.7851662404092071, 'f1': 0.8438661710037174} | | 0.1224 | 9.0 | 3519 | 1.3815 | 0.8231 | 0.8930 | {'accuracy': 0.7928388746803069, 'f1': 0.8566371681415929} | | 0.1224 | 10.0 | 3910 | 1.3834 | 0.8310 | 0.8708 | {'accuracy': 0.7877237851662404, 'f1': 0.8504504504504504} | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1