import tensorflow as tf from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import seq2seq import random import numpy as np class Model(): def __init__(self, args, infer=False): self.args = args if infer: args.batch_size = 1 args.seq_length = 1 if args.model == 'rnn': cell_fn = rnn_cell.BasicRNNCell elif args.model == 'gru': cell_fn = rnn_cell.GRUCell elif args.model == 'lstm': cell_fn = rnn_cell.BasicLSTMCell else: raise Exception("model type not supported: {}".format(args.model)) cell = cell_fn(args.rnn_size) self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers) self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.initial_state = cell.zero_state(args.batch_size, tf.float32) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size]) softmax_b = tf.get_variable("softmax_b", [args.vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data)) inputs = [tf.squeeze(input_, [1]) for input_ in inputs] def loop(prev, _): prev = tf.matmul(prev, softmax_w) + softmax_b prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) self.logits = tf.matmul(output, softmax_w) + softmax_b self.probs = tf.nn.softmax(self.logits) loss = seq2seq.sequence_loss_by_example([self.logits], [tf.reshape(self.targets, [-1])], [tf.ones([args.batch_size * args.seq_length])], args.vocab_size) self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length self.final_state = last_state self.lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), args.grad_clip) optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.apply_gradients(zip(grads, tvars)) def sample(self, sess, words, vocab, num=200, prime='first all', sampling_type=1): state = sess.run(self.cell.zero_state(1, tf.float32)) if not len(prime) or prime == " ": prime = random.choice(list(vocab.keys())) print (prime) for word in prime.split()[:-1]: print (word) x = np.zeros((1, 1)) x[0, 0] = vocab.get(word,0) feed = {self.input_data: x, self.initial_state:state} [state] = sess.run([self.final_state], feed) def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) ret = prime word = prime.split()[-1] for n in range(num): x = np.zeros((1, 1)) x[0, 0] = vocab.get(word,0) feed = {self.input_data: x, self.initial_state:state} [probs, state] = sess.run([self.probs, self.final_state], feed) p = probs[0] if sampling_type == 0: sample = np.argmax(p) elif sampling_type == 2: if word == '\n': sample = weighted_pick(p) else: sample = np.argmax(p) else: # sampling_type == 1 default: sample = weighted_pick(p) pred = words[sample] ret += ' ' + pred word = pred return ret