---
language:
- bn
tags:
- MaskedLM
- Bengali
- RoBERTa
- Question-Answering
- Token Classification
- Text Classification
---
# Indic-Transformers Bengali RoBERTa
## Model description
This is a RoBERTa language model pre-trained on ~6 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/).
This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training.
## Intended uses & limitations
#### How to use
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-bn-roberta')
model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-bn-roberta')
text = "আপনি কেমন আছেন?"
input_ids = tokenizer(text, return_tensors='pt')['input_ids']
out = model(input_ids)[0]
print(out.shape)
# out = [1, 10, 768]
```
#### Limitations and bias
The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).