--- tags: - w8a8 - int8 - vllm license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: ibm-granite/granite-3.1-2b-instruct library_name: transformers --- # granite-3.1-2b-instruct-quantized.w8a8 ## Model Overview - **Model Architecture:** granite-3.1-2b-instruct - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Activation quantization:** INT8 - **Release Date:** 1/8/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct). It achieves an average score of 61.68 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 61.98. ### Model Optimizations This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 1 model_name = "neuralmagic/granite-3.1-2b-instruct-quantized.w8a8" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code ```bash python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w8a8" --calib_size 2048 --dampening_frac 0.01 --observer mse ``` ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply import argparse from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.1) parser.add_argument('--observer', type=str, default="minmax") args = parser.parse_args() model = AutoModelForCausalLM.from_pretrained( args.model_path, device_map="auto", torch_dtype="auto", use_cache=False, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(args.model_path) NUM_CALIBRATION_SAMPLES = args.calib_size DATASET_ID = "neuralmagic/LLM_compression_calibration" DATASET_SPLIT = "train" ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): concat_txt = example["instruction"] + "\n" + example["output"] return {"text": concat_txt} ds = ds.map(preprocess) def tokenize(sample): return tokenizer( sample["text"], padding=False, truncation=False, add_special_tokens=True, ) ds = ds.map(tokenize, remove_columns=ds.column_names) ignore=["lm_head"] mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"] ] recipe = [ SmoothQuantModifier(smoothing_strength=0.7, ignore=ignore, mappings=mappings), GPTQModifier( targets=["Linear"], ignore=["lm_head"], scheme="W8A8", dampening_frac=args.dampening_frac, observer=args.observer, ) ] oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size, max_seq_length=8196, ) # Save to disk compressed. model.save_pretrained(quant_path, save_compressed=True) tokenizer.save_pretrained(quant_path) ```
## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
Evaluation Commands OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` #### HumanEval ##### Generation ``` python3 codegen/generate.py \ --model neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 \ --bs 16 \ --temperature 0.2 \ --n_samples 50 \ --root "." \ --dataset humaneval ``` ##### Sanitization ``` python3 evalplus/sanitize.py \ humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2 ``` ##### Evaluation ``` evalplus.evaluate \ --dataset humaneval \ --samples humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized ```
### Accuracy
Category Metric ibm-granite/granite-3.1-2b-instruct neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 55.63 55.12 99.08
GSM8K (Strict-Match, 5-shot) 60.96 60.58 99.38
HellaSwag (Acc-Norm, 10-shot) 75.21 74.60 99.19
MMLU (Acc, 5-shot) 54.38 54.12 99.52
TruthfulQA (MC2, 0-shot) 55.93 54.87 98.10
Winogrande (Acc, 5-shot) 69.67 70.80 101.62
Average Score 61.98 61.68 99.51
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 67.99 67.03 98.59
BBH (Acc-Norm, 3-shot) 44.11 43.53 98.69
Math-Hard (Exact-Match, 4-shot) 8.66 8.04 92.89
GPQA (Acc-Norm, 0-shot) 28.30 27.60 97.52
MUSR (Acc-Norm, 0-shot) 35.12 34.58 98.46
MMLU-Pro (Acc, 5-shot) 26.87 26.89 100.07
Average Score 35.17 34.61 98.40
HumanEval HumanEval Pass@1 53.40 54.90 102.81
## Inference Performance This model achieves up to 1.4x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
Benchmarking Command ``` guidellm --model neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=,generated_tokens=" --max seconds 360 --backend aiohttp_server ```
### Single-stream performance (measured with vLLM version 0.6.6.post1)
Latency (s)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
A5000 granite-3.1-2b-instruct 10.9 1.4 11.0 1.5 1.4 2.8 6.1
granite-3.1-2b-instruct-quantized.w8a8
(this model)
1.37 7.9 1.0 8.0 1.1 1.0 2.0 4.7
granite-3.1-2b-instruct-quantized.w4a16 1.94 5.4 0.7 5.5 0.8 0.7 1.4 3.4
A6000 granite-3.1-2b-instruct 9.8 1.3 10.0 1.3 1.3 2.6 5.4
granite-3.1-2b-instruct-quantized.w8a8
(this model)
1.31 7.8 1.0 7.6 1.0 0.9 1.9 4.5
granite-3.1-2b-instruct-quantized.w4a16 1.87 5.1 0.7 5.2 0.7 0.7 1.3 3.1
### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
Maximum Throughput (Queries per Second)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
A5000 granite-3.1-2b-instruct 2.9 10.2 1.8 8.2 19.3 9.1 1.3
granite-3.1-2b-instruct-quantized.w8a8
(this model)
1.13 3.1 12.1 2.0 9.6 22.2 10.2 1.4
granite-3.1-2b-instruct-quantized.w4a16 0.98 2.8 10.0 1.8 8.1 18.6 9.0 1.2
A6000 granite-3.1-2b-instruct 3.7 12.4 2.4 10.3 23.6 11.0 1.6
granite-3.1-2b-instruct-quantized.w8a8
(this model)
1.12 3.6 14.4 2.7 12.0 28.3 12.9 1.7
granite-3.1-2b-instruct-quantized.w4a16 0.95 3.7 11.4 2.5 9.8 22.1 10.4 1.4