---
tags:
- w8a8
- int8
- vllm
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: ibm-granite/granite-3.1-2b-instruct
library_name: transformers
---
# granite-3.1-2b-instruct-quantized.w8a8
## Model Overview
- **Model Architecture:** granite-3.1-2b-instruct
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT8
- **Activation quantization:** INT8
- **Release Date:** 1/8/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct).
It achieves an average score of 61.68 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 61.98.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-2b-instruct-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code
```bash
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w8a8" --calib_size 2048 --dampening_frac 0.01 --observer mse
```
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
concat_txt = example["instruction"] + "\n" + example["output"]
return {"text": concat_txt}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
truncation=False,
add_special_tokens=True,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
ignore=["lm_head"]
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"]
]
recipe = [
SmoothQuantModifier(smoothing_strength=0.7, ignore=ignore, mappings=mappings),
GPTQModifier(
targets=["Linear"],
ignore=["lm_head"],
scheme="W8A8",
dampening_frac=args.dampening_frac,
observer=args.observer,
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
max_seq_length=8196,
)
# Save to disk compressed.
model.save_pretrained(quant_path, save_compressed=True)
tokenizer.save_pretrained(quant_path)
```
Evaluation Commands
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
OpenLLM Leaderboard V2:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
#### HumanEval
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized
```
Category | Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic/granite-3.1-2b-instruct-quantized.w8a8 | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 55.63 | 55.12 | 99.08 |
GSM8K (Strict-Match, 5-shot) | 60.96 | 60.58 | 99.38 | |
HellaSwag (Acc-Norm, 10-shot) | 75.21 | 74.60 | 99.19 | |
MMLU (Acc, 5-shot) | 54.38 | 54.12 | 99.52 | |
TruthfulQA (MC2, 0-shot) | 55.93 | 54.87 | 98.10 | |
Winogrande (Acc, 5-shot) | 69.67 | 70.80 | 101.62 | |
Average Score | 61.98 | 61.68 | 99.51 | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 67.99 | 67.03 | 98.59 |
BBH (Acc-Norm, 3-shot) | 44.11 | 43.53 | 98.69 | |
Math-Hard (Exact-Match, 4-shot) | 8.66 | 8.04 | 92.89 | |
GPQA (Acc-Norm, 0-shot) | 28.30 | 27.60 | 97.52 | |
MUSR (Acc-Norm, 0-shot) | 35.12 | 34.58 | 98.46 | |
MMLU-Pro (Acc, 5-shot) | 26.87 | 26.89 | 100.07 | |
Average Score | 35.17 | 34.61 | 98.40 | |
HumanEval | HumanEval Pass@1 | 53.40 | 54.90 | 102.81 |
Latency (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 | granite-3.1-2b-instruct | 10.9 | 1.4 | 11.0 | 1.5 | 1.4 | 2.8 | 6.1 | |
granite-3.1-2b-instruct-quantized.w8a8 (this model) |
1.37 | 7.9 | 1.0 | 8.0 | 1.1 | 1.0 | 2.0 | 4.7 | |
granite-3.1-2b-instruct-quantized.w4a16 | 1.94 | 5.4 | 0.7 | 5.5 | 0.8 | 0.7 | 1.4 | 3.4 | |
A6000 | granite-3.1-2b-instruct | 9.8 | 1.3 | 10.0 | 1.3 | 1.3 | 2.6 | 5.4 | |
granite-3.1-2b-instruct-quantized.w8a8 (this model) |
1.31 | 7.8 | 1.0 | 7.6 | 1.0 | 0.9 | 1.9 | 4.5 | |
granite-3.1-2b-instruct-quantized.w4a16 | 1.87 | 5.1 | 0.7 | 5.2 | 0.7 | 0.7 | 1.3 | 3.1 |
Maximum Throughput (Queries per Second) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 | granite-3.1-2b-instruct | 2.9 | 10.2 | 1.8 | 8.2 | 19.3 | 9.1 | 1.3 | |
granite-3.1-2b-instruct-quantized.w8a8 (this model) |
1.13 | 3.1 | 12.1 | 2.0 | 9.6 | 22.2 | 10.2 | 1.4 | |
granite-3.1-2b-instruct-quantized.w4a16 | 0.98 | 2.8 | 10.0 | 1.8 | 8.1 | 18.6 | 9.0 | 1.2 | |
A6000 | granite-3.1-2b-instruct | 3.7 | 12.4 | 2.4 | 10.3 | 23.6 | 11.0 | 1.6 | |
granite-3.1-2b-instruct-quantized.w8a8 (this model) |
1.12 | 3.6 | 14.4 | 2.7 | 12.0 | 28.3 | 12.9 | 1.7 | |
granite-3.1-2b-instruct-quantized.w4a16 | 0.95 | 3.7 | 11.4 | 2.5 | 9.8 | 22.1 | 10.4 | 1.4 |