--- language: - mn license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: canine-s-mongolian-ner results: [] --- # canine-s-mongolian-ner This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3588 - Precision: 0.5262 - Recall: 0.5383 - F1: 0.5322 - Accuracy: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6287 | 1.0 | 477 | 0.5233 | 0.2908 | 0.1814 | 0.2234 | 0.8471 | | 0.4898 | 2.0 | 954 | 0.4404 | 0.3727 | 0.2993 | 0.3320 | 0.8677 | | 0.403 | 3.0 | 1431 | 0.3939 | 0.4498 | 0.3922 | 0.4191 | 0.8832 | | 0.3416 | 4.0 | 1908 | 0.3720 | 0.4734 | 0.4606 | 0.4669 | 0.8934 | | 0.2986 | 5.0 | 2385 | 0.3640 | 0.5093 | 0.4745 | 0.4913 | 0.8987 | | 0.2693 | 6.0 | 2862 | 0.3599 | 0.5126 | 0.5039 | 0.5082 | 0.9012 | | 0.243 | 7.0 | 3339 | 0.3534 | 0.5009 | 0.5241 | 0.5123 | 0.9026 | | 0.2262 | 8.0 | 3816 | 0.3582 | 0.5103 | 0.5315 | 0.5207 | 0.9048 | | 0.213 | 9.0 | 4293 | 0.3534 | 0.5195 | 0.5327 | 0.5260 | 0.9059 | | 0.2064 | 10.0 | 4770 | 0.3588 | 0.5262 | 0.5383 | 0.5322 | 0.9073 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3