--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: fintunned-v2-roberta_GA results: [] --- # fintunned-v2-roberta_GA This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1635 - Accuracy: 0.9523 - F1: 0.9527 - Precision: 0.9534 - Recall: 0.9523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.3896 | 0.45 | 50 | 2.2632 | 0.325 | 0.2696 | 0.4504 | 0.3447 | | 1.2481 | 0.91 | 100 | 0.4536 | 0.8841 | 0.8873 | 0.8940 | 0.8892 | | 0.3487 | 1.36 | 150 | 0.2978 | 0.9136 | 0.9161 | 0.9186 | 0.9167 | | 0.2618 | 1.82 | 200 | 0.2472 | 0.9295 | 0.9319 | 0.9362 | 0.9313 | | 0.2223 | 2.27 | 250 | 0.1872 | 0.9409 | 0.9415 | 0.9445 | 0.9408 | | 0.076 | 2.73 | 300 | 0.1635 | 0.9523 | 0.9527 | 0.9534 | 0.9523 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1