import base64 from io import BytesIO from typing import Dict, List, Any from transformers import Pix2StructForConditionalGeneration, AutoProcessor from PIL import Image import torch class EndpointHandler: """ A basic handler for a single GPU in Inference Endpoints. Should not be used on multiple GPUs or on CPU. """ def __init__(self, *args, **kwargs): model_name = "google/pix2struct-infographics-vqa-large" """ dtype tradeoffs: - float16: works on T4, may have slight worse quality generations - bfloat16: doesn't work on T4 (works on A10), better quality generation - float32: works on all GPUs, best quality generation, 30-40% slower """ self.dtype = torch.float16 self.model = Pix2StructForConditionalGeneration.from_pretrained( model_name, device_map="cuda:0", torch_dtype=self.dtype, ) self.processor = AutoProcessor.from_pretrained(model_name) self.device = torch.device("cuda") def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Can pass a list of images or a single image. Args: data (:obj:): includes the input data and the parameters for the inference. Return: a dictionary with the output of the model. The only key is `output` and the value is a list of str. """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", {}) if isinstance(inputs["image"], list): img = [ Image.open(BytesIO(base64.b64decode(img))) for img in inputs["image"] ] else: img = Image.open(BytesIO(base64.b64decode(inputs["image"]))) question = inputs["question"] with torch.inference_mode(): model_inputs = self.processor( images=img, text=question, return_tensors="pt" ).to(self.device, dtype=self.dtype) raw_output = self.model.generate(**model_inputs, **parameters) decoded_output = self.processor.batch_decode( raw_output, skip_special_tokens=True ) # postprocess the prediction return {"output": decoded_output}