from typing import Dict, List, Any from sentence_transformers import SentenceTransformer class EndpointHandler(): def __init__(self, path=""): model_name = "all-MiniLM-L6-v2" self.model = SentenceTransformer( model_name, backend="onnx", model_kwargs={ "file_name": "model_O3.onnx", "provider": "CUDAExecutionProvider", } ) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ inputs = data.pop("inputs", data) prediction = self.model.encode(inputs) return prediction.tolist()