--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-base-company-names results: [] --- # deberta-v3-base-company-names This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0693 - Precision: 0.7740 - Recall: 0.7963 - F1: 0.7850 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0752 | 1.0 | 2126 | 0.0664 | 0.7416 | 0.7979 | 0.7687 | 0.9757 | | 0.0484 | 2.0 | 4252 | 0.0652 | 0.7725 | 0.7903 | 0.7813 | 0.9768 | | 0.0415 | 3.0 | 6378 | 0.0693 | 0.7740 | 0.7963 | 0.7850 | 0.9769 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.14.1