{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78a4cf68e4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719492582595064980, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBgGT3nmnw/46s7PMMAjb6moeA8wXWNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJDydz4k/uMAWyUTT8BjAF0lEdAorhLe9Ba93V9lChoBkdAb8IRSP2f02gHTYIBaAhHQKK5nfYzzmR1fZQoaAZHQHJYi3b212JoB01HAWgIR0CiurW87IT5dX2UKGgGR0BxpqMrEtNBaAdNQgFoCEdAorxkkGA09HV9lChoBkdAWwK/O+qR2mgHTegDaAhHQKLAXsi0OVh1fZQoaAZHQG8pSncclw9oB03HAWgIR0CiwedsrNGFdX2UKGgGR0BxaZ2Pkq+baAdNZwFoCEdAosPJ+x4Y8HV9lChoBkdAbq+E+PikwmgHTW0BaAhHQKLFByLhrFh1fZQoaAZHQG7VP0AcT8JoB01JAWgIR0CixkFsYVIqdX2UKGgGR0BiAzKvFFUiaAdN6ANoCEdAosu0h9srNHV9lChoBkdAbzLg/C66KGgHTfwBaAhHQKLOBS75Ec91fZQoaAZHQHKRBwl0HQhoB01bAWgIR0CizzvKdQO4dX2UKGgGR0BuP7g62fCiaAdNWwFoCEdAotBWTNdJKHV9lChoBkdAa/matLcsUmgHTakBaAhHQKLSjZ5AyEd1fZQoaAZHQGRDVdHDrJNoB03oA2gIR0Ci1pUmlZX/dX2UKGgGR0BEpnaFmFrVaAdNMwFoCEdAoteXHo5ggHV9lChoBkdAcmZlKsdT52gHTVUBaAhHQKLYymQbMot1fZQoaAZHQHBW3UYsNDtoB03DAWgIR0Ci2vYtYjjadX2UKGgGR0BtxWZ3LV4HaAdNmAFoCEdAotxCj1wo9nV9lChoBkdAcj4a4tpVTGgHTcQBaAhHQKLeeCnP3SN1fZQoaAZHQHKZ14TsY2toB00jAWgIR0Ci35TDwYtQdX2UKGgGR0BvLS++M6zWaAdNdQFoCEdAouFG6K+BYnV9lChoBkdAQ7/tBv73wmgHTRcBaAhHQKLjkFj/dZd1fZQoaAZHQG0Z0KRdQfpoB01qAWgIR0Ci5UEwevIPdX2UKGgGR0AnIOUdJaq0aAdNCQFoCEdAouYQ3gk1M3V9lChoBkdAcCcXFtKqXGgHTXABaAhHQKLn9xCpm291fZQoaAZHQG83kqMFUyZoB01QAWgIR0Ci6RRiobXIdX2UKGgGR0BtJg3xWkrPaAdNUwFoCEdAouoiRr8BMnV9lChoBkdAcCucIJJGv2gHTXYBaAhHQKLsDwy6+WZ1fZQoaAZHQEGBOxB3RohoB00AAWgIR0Ci7PZYoy9FdX2UKGgGR0BxYwRJ2+wlaAdNNQFoCEdAou3r9n9NvnV9lChoBkdAcRnT37DVIGgHTTQBaAhHQKLu/KA8Swp1fZQoaAZHQEmSm9g4OtpoB0vqaAhHQKLwXWd3B551fZQoaAZHQHETJcPe54JoB01iAWgIR0Ci8ZI8ZDRddX2UKGgGR0BrnjWwu/UOaAdNQwFoCEdAovKk3n6l+HV9lChoBkdAcIBNEPUaymgHTVcBaAhHQKL0ZqeK8+R1fZQoaAZHQG6yV1W8yvdoB011AWgIR0Ci9bR9G7SRdX2UKGgGR0ByldA0Kqn4aAdNewFoCEdAovb+2qkuYnV9lChoBkdAbrGaZQYUFmgHTVcBaAhHQKL40F1SwW51fZQoaAZHQHJXgi3XqaBoB01sAWgIR0Ci+lXPiT+vdX2UKGgGR0BuqoyXUpd9aAdNTgFoCEdAovvWY4Qz13V9lChoBkdAcZgT9KmKqGgHTUEBaAhHQKL+VRjz7Mx1fZQoaAZHQHDBUiUxEfFoB00fAWgIR0Ci/1VDa4+bdX2UKGgGR0BtfHy9VWCFaAdNSQFoCEdAowBj2USqVHV9lChoBkdAbkGVQhwEQ2gHTT8BaAhHQKMCGQwsXi11fZQoaAZHQG0oS1/lQuVoB01IAWgIR0CjA0Jnxri3dX2UKGgGR0BwlQ5q/M4caAdNRAFoCEdAowRReLNwBHV9lChoBkdAcSPtjTa0yGgHTdEBaAhHQKMGilIEr5J1fZQoaAZHQHG50wWWQfZoB02LAmgIR0CjCLksasIWdX2UKGgGR0BwR2KXOW0JaAdNRQJoCEdAowtHPgNwznV9lChoBkdAbK+62fChvmgHTVQBaAhHQKMMYfpUxVR1fZQoaAZHQG/PXQ2MsH1oB03rAWgIR0CjDrQNb1RMdX2UKGgGR0BxKukEcKgJaAdNjAFoCEdAow/0roW56XV9lChoBkdAb+b6a9bosGgHTToBaAhHQKMRC4FRpDh1fZQoaAZHQG3xv0yxiXpoB02FAWgIR0CjEy3h4t6HdX2UKGgGR0A6zk4m1IAfaAdL5WgIR0CjFA8274BWdX2UKGgGR0BwDAdKdxyXaAdNTgJoCEdAoxe4LE1l5HV9lChoBkdAQ3emR/3Fk2gHS/VoCEdAoxiJI6KceHV9lChoBkdAcV3khib2DmgHTWQBaAhHQKMZvnnMdLh1fZQoaAZHQHEhF6AvtdBoB02PAWgIR0CjG8CemNzbdX2UKGgGR0BxSxPN3W4FaAdNZgFoCEdAoxz+aOPvKHV9lChoBkdAb40Tg2qDLGgHTVECaAhHQKMfrxQSBbx1fZQoaAZHQFGc2wmmce9oB00bAWgIR0CjIJ55AyEddX2UKGgGR0Bwd3EcbR4RaAdNVwFoCEdAoyHBCBwuNHV9lChoBkdAcJtI5HVf/mgHTY0BaAhHQKMjuerdWQx1fZQoaAZHQGyMATh5xBFoB01PAWgIR0CjJONLcsUZdX2UKGgGR0ByGXUAksz3aAdNoAFoCEdAoyYuoBJZn3V9lChoBkdAcBvhK15SnGgHTccBaAhHQKMoXCP6sQx1fZQoaAZHQG1tQtSQ5m1oB01PAWgIR0CjKYNAC4jKdX2UKGgGR0Bsp4uf29L6aAdNoQFoCEdAoyrmTibUgHV9lChoBkdAcBF/Ot4iYGgHTVcBaAhHQKMtHNr0rbx1fZQoaAZHQG3LYNRWLgpoB01YAWgIR0CjLrLDQ7cPdX2UKGgGR0ByI6q4pc5baAdNLgFoCEdAozAc94eLenV9lChoBkdAcSojVhCtzWgHTVkBaAhHQKMybANXo1V1fZQoaAZHQHIXCOinHedoB01gAWgIR0CjM5wvpQk5dX2UKGgGR0Buee2RaHKwaAdNcQFoCEdAozTllwtJ4HV9lChoBkdAb2ziUgSvkmgHTXUBaAhHQKM20qGUOd51fZQoaAZHQHIDDfWMCLdoB01ZAWgIR0CjN+f0VafSdX2UKGgGR0Bvd/r0J4SpaAdNiwFoCEdAozndT72tdXV9lChoBkdAbZMGUwBYFWgHTT4BaAhHQKM6/f3vhIh1fZQoaAZHQHKyJ1mrbQFoB01nAWgIR0CjPB8GC7K8dX2UKGgGR0BxPeBtk4FSaAdNPgFoCEdAoz3To6jnFHV9lChoBkdAbzQ9yLhrFmgHTT4BaAhHQKM+/61LJ0Z1fZQoaAZHQHFuaFyq+8JoB00/AWgIR0CjQAhmXgLrdX2UKGgGR0Bw1r/1g6U8aAdNXQFoCEdAo0E5QHiWFHV9lChoBkdAcWMOu7pV0mgHTYIBaAhHQKNDLexfOUt1fZQoaAZHQHDU5sTFl05oB01BAWgIR0CjRDpAt4A0dX2UKGgGR0BwLJDrqt5laAdNYQFoCEdAo0Y116mfoXV9lChoBkdAQPiIJqqOtGgHS/poCEdAo0dQBV+7UXV9lChoBkdAbqc76pHZsmgHTTQBaAhHQKNIpa/RE4N1fZQoaAZHQGuLxA0Kqn5oB01FAWgIR0CjSh9nscABdX2UKGgGR0BwdORFI/Z/aAdNawFoCEdAo0yV0zTF2nV9lChoBkdAcB5/nW8RMGgHTXEBaAhHQKNNzNet0V91fZQoaAZHQHAA+6ErXlNoB02+AWgIR0CjT+6BI4EPdX2UKGgGR0BsFKIxgy/LaAdNWQFoCEdAo1EiRr8BMnV9lChoBkdAcGjABDG96GgHTUMBaAhHQKNSJ0ihWYF1fZQoaAZHQG/CgqmTC+FoB00/AWgIR0CjU0VARkEtdX2UKGgGR0BvsYWYWtU5aAdNLQFoCEdAo1UFedCmdnV9lChoBkdAUE6AJ9iMHmgHTQQBaAhHQKNVz+z+m3x1fZQoaAZHQHCj+EZiuuBoB02lAWgIR0CjV020AtFsdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRxSE5Bym7X7zHO3A7/0FRzACMA2luY5SKELPc29zIOOJLQC/imHZLRFl1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQMuS+AtOn9hlninIu8RqOfYwDaW5jlIoQ58g9vLFjNhKX5lKcgnU3KHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylEqq3JhZdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}