--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: arabic-offensive-comment-model results: [] --- # arabic-offensive-comment-model This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2989 - Accuracy: 0.9167 - F1: 0.8197 - Precision: 0.8507 - Recall: 0.7959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3048 | 1.0 | 675 | 0.2989 | 0.9167 | 0.8197 | 0.8507 | 0.7959 | | 0.1519 | 2.0 | 1350 | 0.4141 | 0.915 | 0.8341 | 0.8268 | 0.8420 | | 0.0398 | 3.0 | 2025 | 0.5259 | 0.9033 | 0.8105 | 0.8049 | 0.8163 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3