File size: 2,197 Bytes
a791db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4213
- Rouge1: 31.833
- Rouge2: 11.5704
- Rougel: 28.3537
- Rougelsum: 29.7517

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 12.421        | 1.0   | 185  | 4.1761          | 8.5214  | 1.3412  | 8.1063  | 8.2251    |
| 4.6683        | 2.0   | 370  | 2.8343          | 20.6485 | 7.1917  | 18.6741 | 19.4706   |
| 3.6666        | 3.0   | 555  | 2.5616          | 20.3673 | 6.1998  | 18.2531 | 19.0305   |
| 3.3157        | 4.0   | 740  | 2.5002          | 28.4326 | 11.0801 | 25.391  | 26.4882   |
| 3.1834        | 5.0   | 925  | 2.4586          | 29.0975 | 11.3058 | 26.0004 | 27.5342   |
| 3.0983        | 6.0   | 1110 | 2.4191          | 31.5865 | 11.3633 | 27.6063 | 29.6726   |
| 3.0338        | 7.0   | 1295 | 2.4258          | 31.845  | 11.9743 | 28.3534 | 29.8196   |
| 2.9805        | 8.0   | 1480 | 2.4213          | 31.833  | 11.5704 | 28.3537 | 29.7517   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0