---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- tarudesu/ViHealthQA
license: mit
---
# nampham1106/bkcare-embedding
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
### Installation
- Install `sentence-transformers`:
- `pip install -U sentence-transformers`
- Install `pyvi` to word segment:
- `pip install pyvi`
### Example usage
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
from pyvi.ViTokenizer import tokenize
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]
model = SentenceTransformer('nampham1106/bkcare-embedding')
sentences = [tokenize(sentence) for sentence in sentences]
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
from pyvi.ViTokenizer import tokenize
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nampham1106/bkcare-embedding')
model = AutoModel.from_pretrained('nampham1106/bkcare-embedding')
sentences = [tokenize(sentence) for sentence in sentences]
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nampham1106/bkcare-embedding)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 307 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 15,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors