--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - tarudesu/ViHealthQA license: mit --- # nampham1106/bkcare-embedding This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) ### Installation - Install `sentence-transformers`: - `pip install -U sentence-transformers` - Install `pyvi` to word segment: - `pip install pyvi` ### Example usage Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer from pyvi.ViTokenizer import tokenize sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."] model = SentenceTransformer('nampham1106/bkcare-embedding') sentences = [tokenize(sentence) for sentence in sentences] embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch from pyvi.ViTokenizer import tokenize #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nampham1106/bkcare-embedding') model = AutoModel.from_pretrained('nampham1106/bkcare-embedding') sentences = [tokenize(sentence) for sentence in sentences] # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nampham1106/bkcare-embedding) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 307 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors