nadellaroshni commited on
Commit
5ad0ca9
1 Parent(s): b5f0c1a

End of training

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -1,23 +1,24 @@
1
  ---
2
- base_model: google/reformer-crime-and-punishment
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
7
  model-index:
8
- - name: reformer_model
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
- # reformer_model
16
 
17
- This model is a fine-tuned version of [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.6693
20
- - Accuracy: 0.561
21
 
22
  ## Model description
23
 
@@ -48,13 +49,13 @@ The following hyperparameters were used during training:
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
- | 0.6841 | 1.0 | 625 | 0.6725 | 0.559 |
52
- | 0.6789 | 2.0 | 1250 | 0.6693 | 0.561 |
53
 
54
 
55
  ### Framework versions
56
 
57
- - Transformers 4.40.2
58
  - Pytorch 2.3.0+cpu
59
- - Datasets 2.19.1
60
  - Tokenizers 0.19.1
 
1
  ---
2
+ license: cc-by-4.0
3
+ base_model: l3cube-pune/telugu-bert
4
  tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
  model-index:
9
+ - name: telugu-bert
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # telugu-bert
17
 
18
+ This model is a fine-tuned version of [l3cube-pune/telugu-bert](https://huggingface.co/l3cube-pune/telugu-bert) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.3905
21
+ - Accuracy: 0.848
22
 
23
  ## Model description
24
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.5958 | 1.0 | 625 | 0.4664 | 0.807 |
53
+ | 0.4502 | 2.0 | 1250 | 0.3905 | 0.848 |
54
 
55
 
56
  ### Framework versions
57
 
58
+ - Transformers 4.41.2
59
  - Pytorch 2.3.0+cpu
60
+ - Datasets 2.20.0
61
  - Tokenizers 0.19.1