--- license: apache-2.0 tags: - generated_from_trainer datasets: - germeval_14 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-de-ner results: - task: name: Token Classification type: token-classification dataset: name: germeval_14 type: germeval_14 config: germeval_14 split: test args: germeval_14 metrics: - name: Precision type: precision value: 0.8109431552054502 - name: Recall type: recall value: 0.771990271584921 - name: F1 type: f1 value: 0.7909874364032811 - name: Accuracy type: accuracy value: 0.9786213727432309 language: - de widget: - text: Mein Name ist Wolfgang und ich lebe in Berlin example_title: Example 1 - text: Mein Name ist Sarah und ich lebe in London example_title: Example 2 - text: Mein Name ist Clara und ich lebe in Berkeley, California. example_title: Example 3 --- # bert-base-uncased-de-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the germeval_14 dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - Precision: 0.8109 - Recall: 0.7720 - F1: 0.7910 - Accuracy: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on data that follows the [`IOB`]() convention. Full tagset with indices: ```python {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6,} ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.104 | 1.0 | 3000 | 0.0973 | 0.7027 | 0.7323 | 0.7172 | 0.9712 | | 0.0597 | 2.0 | 6000 | 0.0942 | 0.8135 | 0.7172 | 0.7623 | 0.9766 | | 0.0345 | 3.0 | 9000 | 0.1051 | 0.7924 | 0.7569 | 0.7742 | 0.9773 | | 0.0172 | 4.0 | 12000 | 0.1170 | 0.8074 | 0.7628 | 0.7844 | 0.9779 | | 0.0092 | 5.0 | 15000 | 0.1264 | 0.8068 | 0.7803 | 0.7933 | 0.9788 | | 0.0035 | 6.0 | 18000 | 0.1374 | 0.8109 | 0.7720 | 0.7910 | 0.9786 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2