--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-swatf results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: swahili split: test args: swahili metrics: - name: Rouge1 type: rouge value: 9.6904 --- # mt5-swatf This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 9.6904 - Rouge2: 1.3302 - Rougel: 8.4948 - Rougelsum: 8.497 - Gen Len: 685.8156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | No log | 1.0 | 188 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 | | No log | 2.0 | 376 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 | | 0.0 | 3.0 | 564 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 | | 0.0 | 4.0 | 752 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 | | 0.0 | 5.0 | 940 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3