A Moe model built on top of Qwen1.5-7B-Chat, Qwen1.5-7B and Crystalcareai/CrystalQwen-1.5-7B. ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "mzbac/qwen-1.5-2x3-hf" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, load_in_4bit=True, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_id) chat = [ {"role": "user", "content": "how backpropagation works?"}, {"role": "assistant", "content": "\n"}, ] text = tokenizer.apply_chat_template(chat, tokenize=False) inputs = tokenizer.encode(text, return_tensors="pt").to("cuda") generate_kwargs = dict( input_ids=inputs, temperature=0.6, max_new_tokens=500, do_sample=True, ) outputs = model.generate(**generate_kwargs) print(tokenizer.decode(outputs[0])) ```