--- license: llama3 --- # Model fine-tuned LLaMA 3 8B on synthetic dataset generated by GPT-4 and LLaMA 3 70B via MLX-LM ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "mzbac/llama-3-8B-grammar-hf" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ { "role": "system", "content": "Please correct, polish, or translate the text to standard English.", }, ] messages.append({"role": "user", "content":"Text=```neither 经理或员工 has been informed about the meeting```"}) input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.1, ) response = outputs[0] print(tokenizer.decode(response)) # <|begin_of_text|><|start_header_id|>system<|end_header_id|> # Please correct, polish, or translate the text to standard English.<|eot_id|><|start_header_id|>user<|end_header_id|> # Text=```neither 经理或员工 has been informed about the meeting```<|eot_id|><|start_header_id|>assistant<|end_header_id|> # Output=Neither the manager nor the employees have been informed about the meeting.<|eot_id|> ```