--- language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small Korea results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_17_0 config: ko split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 26.967150496562258 --- # Whisper Small Korea This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 - Wer: 26.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0026 | 1.1111 | 50 | 0.3466 | 26.0886 | | 0.0013 | 2.2222 | 100 | 0.3569 | 25.8212 | | 0.0025 | 3.3333 | 150 | 0.3672 | 25.2865 | | 0.003 | 4.4444 | 200 | 0.3578 | 25.5157 | | 0.0091 | 5.5556 | 250 | 0.3599 | 25.3629 | | 0.0072 | 6.6667 | 300 | 0.3682 | 25.9740 | | 0.0054 | 7.7778 | 350 | 0.3785 | 26.8526 | | 0.0093 | 8.8889 | 400 | 0.3764 | 27.1581 | | 0.013 | 10.0 | 450 | 0.3886 | 28.5332 | | 0.0146 | 11.1111 | 500 | 0.3900 | 27.5401 | | 0.0128 | 12.2222 | 550 | 0.3917 | 27.3491 | | 0.0054 | 13.3333 | 600 | 0.3926 | 26.5852 | | 0.0029 | 14.4444 | 650 | 0.4281 | 28.4186 | | 0.0062 | 15.5556 | 700 | 0.3957 | 27.5401 | | 0.0062 | 16.6667 | 750 | 0.4080 | 27.7693 | | 0.0023 | 17.7778 | 800 | 0.4151 | 27.4637 | | 0.0034 | 18.8889 | 850 | 0.4153 | 28.2659 | | 0.0009 | 20.0 | 900 | 0.4133 | 27.0053 | | 0.0003 | 21.1111 | 950 | 0.4192 | 26.9672 | | 0.0003 | 22.2222 | 1000 | 0.4223 | 26.9290 | | 0.0002 | 23.3333 | 1050 | 0.4247 | 27.0053 | | 0.0002 | 24.4444 | 1100 | 0.4266 | 26.9672 | | 0.0002 | 25.5556 | 1150 | 0.4279 | 27.0817 | | 0.0002 | 26.6667 | 1200 | 0.4290 | 27.0053 | | 0.0002 | 27.7778 | 1250 | 0.4299 | 26.9672 | | 0.0002 | 28.8889 | 1300 | 0.4306 | 26.9672 | | 0.0002 | 30.0 | 1350 | 0.4312 | 27.0053 | | 0.0002 | 31.1111 | 1400 | 0.4316 | 26.9672 | | 0.0002 | 32.2222 | 1450 | 0.4318 | 26.9672 | | 0.0002 | 33.3333 | 1500 | 0.4319 | 26.9672 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1