--- license: apache-2.0 tags: - generated_from_trainer datasets: - musabg/wikipedia-tr-summarization metrics: - rouge model-index: - name: mt5-xl-tr-summarization results: - task: name: Summarization type: summarization dataset: name: musabg/wikipedia-tr-summarization type: musabg/wikipedia-tr-summarization split: validation metrics: - name: Rouge1 type: rouge value: 56.4468 language: - tr --- # mT5-Xl Turkish Summarization This model is a fine-tuned version of [google/mt5-xl](https://huggingface.co/google/mt5-xl) on the musabg/wikipedia-tr-summarization dataset. This can be used with HF summarization pipeline. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Eval results It achieves the following results on the evaluation set: - Loss: 0.5676 - Rouge1: 56.4468 - Rouge2: 41.3258 - Rougel: 48.1909 - Rougelsum: 48.4284 - Gen Len: 75.9265 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3