from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F from peft import PeftModel # Load model and tokenizer model_name = "munzirmuneer/phishing_url_gemma_pytorch" # Replace with your specific model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model = PeftModel.from_pretrained(model, model_name) def predict(input_text): # Tokenize input inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) # Run inference with torch.no_grad(): outputs = model(**inputs) # Get logits and probabilities logits = outputs.logits probs = F.softmax(logits, dim=-1) # Get the predicted class (highest probability) pred_class = torch.argmax(probs, dim=-1) return pred_class.item(), probs[0].tolist()