--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: medium-vanilla-target-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8964 - name: F1 type: f1 value: 0.945370175068551 --- # medium-vanilla-target-imdb This model is a fine-tuned version of [google/bert_uncased_L-8_H-512_A-8](https://huggingface.co/google/bert_uncased_L-8_H-512_A-8) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4330 - Accuracy: 0.8964 - F1: 0.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3068 | 0.64 | 500 | 0.2373 | 0.9061 | 0.9507 | | 0.2143 | 1.28 | 1000 | 0.1204 | 0.9534 | 0.9761 | | 0.1655 | 1.92 | 1500 | 0.1557 | 0.942 | 0.9701 | | 0.1107 | 2.56 | 2000 | 0.2791 | 0.9268 | 0.9620 | | 0.0905 | 3.2 | 2500 | 0.4330 | 0.8964 | 0.9454 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2