{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79bca18461c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724258390518900619, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpAmbwplly8jlmYO81ggb1U2Bs9rqSDPgAAgD8AAIA/AFRjvdKwuz+yXCm+jcubvgmdQD2681y9AAAAAAAAAAAA2Ic8BFerP/J3ID2HIfu++eUbPXKpNbwAAAAAAAAAAI2FCL7mVYc/M8pfvlxu1L41WSG+uiiBvQAAAAAAAAAAZm9nvTbxcz37UVM+/SYqvj/RKj3vPsU8AAAAAAAAAAAa0lO9Tn2bPm8gEz4j/0q+Kuntu9qlIzsAAAAAAAAAAPrMB74PUIk/iAPHvtkH874SvRW+bWlOvgAAAAAAAAAA5oQ9PqJKcj7NgHK+Hl+KvuQUCb1KbZq8AAAAAAAAAAANmF4+7LzUPrKgQL7KM7m+EGZdPdAif70AAAAAAAAAAH0zhL6JDEk/h3RGvUXzlL7XoB++TPstPAAAAAAAAAAAzTQ5PU/qL7xnLgW89daQPBG1mz3K2W69AACAPwAAgD8A4+q82IuTP1rXvb2L/um+V69WvWLFjr0AAAAAAAAAAIBYij2PwjK8QzzhvSbXJDzcDZg9GjkMvQAAgD8AAAAAwIVpPudmgD+6wAU+f9PjvlP0Wz4KSKG9AAAAAAAAAABAZpu9H2cLP6jZoD14D4K+SMqBveT5rT0AAAAAAAAAALPgOr1SgIS7EBXXu/cvCTzHTak8kMf3vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4XozeoDPqMAWyUTRoBjAF0lEdAjvdLELpiZ3V9lChoBkdAcBDa3Zwn6WgHTQEBaAhHQI748BKcurZ1fZQoaAZHQG9oSp71Iy1oB00qAWgIR0CO+fS9/SYxdX2UKGgGR0Bw8p2yLQ5WaAdNLwFoCEdAjvsWjoIOY3V9lChoBkdAckVtpmEoOWgHTSYBaAhHQI782FajesR1fZQoaAZHQHJFVBQemvZoB00aAWgIR0CO/Z5RCQcQdX2UKGgGR0ByWWRxLkCFaAdL5WgIR0CO/b+CsfaIdX2UKGgGR0BwvmaDwpfAaAdNFgFoCEdAjv4xagVXWHV9lChoBkdAb330PpY9xWgHTTgBaAhHQI7/Oqgh8pl1fZQoaAZHQHFK0Q9RrJtoB00WAWgIR0CO/4xrSE13dX2UKGgGR0BxbIeyRjjJaAdNFQFoCEdAjwAtHYpUgnV9lChoBkdAcOmci4axYGgHTSIBaAhHQI8Dke6qbSZ1fZQoaAZHQG/ab/GVAzJoB00TAWgIR0CPA83VCojwdX2UKGgGR0BygVhScbzcaAdNgAFoCEdAjwaBOP/7znV9lChoBkdAcCFvxH5JsmgHTQ8BaAhHQI8HBPXTVlR1fZQoaAZHQHBtZEUj9n9oB00jAWgIR0CPBwG47Rv4dX2UKGgGR0ByzyeMAFPjaAdNDQFoCEdAjwmN16mfoXV9lChoBkdAcWIqqfe1r2gHTTgBaAhHQI8LTIT4+KV1fZQoaAZHQHCc1gH/tIFoB00fAWgIR0CPDA5lvqC6dX2UKGgGR0BxlaU9pyp8aAdNBAFoCEdAjw26t1ZDA3V9lChoBkdAcXZcN6PbPGgHTScBaAhHQI8Og+bExZd1fZQoaAZHQHB0FdonKGNoB00eAWgIR0CPDsKtPpIMdX2UKGgGR0BxYISmIj4YaAdNIQFoCEdAjw8QtjCpFXV9lChoBkdAb+Nle4TbnGgHTSIBaAhHQI8QjxVhkRV1fZQoaAZHQHHV6GUOd5JoB00VAWgIR0CPEObDuSfUdX2UKGgGR0ByMqSlnAZbaAdNSQFoCEdAjxMPbO/tY3V9lChoBkdAbz51K5Cng2gHTQ8BaAhHQI8T9+7UXpJ1fZQoaAZHQHFms2rGR3hoB00TAWgIR0CPFGe7L+xXdX2UKGgGR0Bw+KBiCrcTaAdNOAFoCEdAjxmeg13t8nV9lChoBkdAcqpx1xKg7GgHTTgBaAhHQI8aLnoxHoZ1fZQoaAZHQG55/LTx5LRoB00RAWgIR0CPGouJUHY6dX2UKGgGR0Bvf4uK4x1xaAdNRAFoCEdAjxsCMglniHV9lChoBkdAcR4PfsNUfmgHTQsBaAhHQI8bzUkOZst1fZQoaAZHQHMjLb1yvLZoB0v3aAhHQI8cu9L6DXh1fZQoaAZHQHFCFg2Ifr9oB00QAWgIR0CPHyoTfzjFdX2UKGgGR0BxDGPFNtZWaAdNDwFoCEdAjx9aol2NenV9lChoBkdAcx+itq59VmgHTTwBaAhHQI8fn1SOzY51fZQoaAZHQG/IEB8x9G9oB00bAWgIR0CPIFbX6InCdX2UKGgGR0BxjSI55qubaAdNCAFoCEdAjyDQKjSG8HV9lChoBkdAbED/XGwRoWgHTTABaAhHQI8jZxzaK1p1fZQoaAZHQHDryN4qwyJoB00RAWgIR0CPI+FEAo5QdX2UKGgGR0Bw8NweeWfLaAdNAwFoCEdAjyP2dEsrd3V9lChoBkdAbRErFOwgT2gHTQ0BaAhHQI8k2n889wF1fZQoaAZHQGz+wRoRIz5oB00SAWgIR0CPSWy2QXANdX2UKGgGR0Bw9tHRTjvNaAdNDAFoCEdAj0nYM4LkS3V9lChoBkdAcfulK9PDYWgHTRcBaAhHQI9KOZNO/L11fZQoaAZHQEJ8R5kbxVhoB0vRaAhHQI9KqYsunMt1fZQoaAZHQHL6bRSgoPVoB00UAWgIR0CPSrq7iADrdX2UKGgGR0Bw5ZRekYXPaAdNCwFoCEdAj0vLs8gZCXV9lChoBkdAcp5LuhK15WgHS/loCEdAj04P91loUXV9lChoBkdAc3tshxHXmWgHTQcBaAhHQI9OJrBTGYN1fZQoaAZHQHIukknkT6BoB00nAWgIR0CPT95D7ZWadX2UKGgGR0BhKDwYtQKsaAdN6ANoCEdAj1A9eIEbHnV9lChoBkdAcGiJ1q33H2gHTR0BaAhHQI9QyXt0FKV1fZQoaAZHQHCQ1LFn7HhoB0v8aAhHQI9R8H0K7Zp1fZQoaAZHQG55AgPmPo5oB00DAWgIR0CPU1q6e5FxdX2UKGgGR0Bx+4yULUkOaAdNNwFoCEdAj1TIOhCdBnV9lChoBkdAcCmNkOI682gHTTsBaAhHQI9VlFYuCf91fZQoaAZHQHGNeXVsk6doB00LAWgIR0CPWX/yXlbNdX2UKGgGR0By7aPikwevaAdNAwFoCEdAj1ngYHgP3HV9lChoBkdAcR5SmIj4YmgHTRABaAhHQI9audy1eBx1fZQoaAZHQHLnbLyMDOloB003AWgIR0CPW8aJAMUidX2UKGgGR0BxwIvTPSlWaAdNOQFoCEdAj1y2pIczZnV9lChoBkdAcoz5Jsfq5mgHS+xoCEdAj13+FtbcGnV9lChoBkdAba+I8hcJMWgHTVMCaAhHQI9egq0+kgx1fZQoaAZHQHC6lXaJyhloB005AWgIR0CPXo12JSBLdX2UKGgGR0Bxvh9Dx9XtaAdNGAFoCEdAj17iDdxhlXV9lChoBkdAcCtRSgoPTWgHTR0BaAhHQI9fMt/WlM11fZQoaAZHQHKDEIPbwjNoB00JAWgIR0CPX+U1yeZodX2UKGgGR0Bx/Xk/8l5XaAdNOgFoCEdAj2LVzp5eJHV9lChoBkdAbPIscyWRimgHTTsBaAhHQI9kGYx+KCR1fZQoaAZHQHIs2p6yB09oB00pAWgIR0CPZIoZydWidX2UKGgGR0Bx8ID5j6N3aAdNDgFoCEdAj2UbT+ee4HV9lChoBkdAch5hgE2YOWgHTTcBaAhHQI9mmVopQUJ1fZQoaAZHQHAmpgG8mKJoB0v8aAhHQI9nmmm+Cbt1fZQoaAZHQHKJU5EMLF5oB00fAWgIR0CPagpkwvg4dX2UKGgGR0BwI9x5s0pFaAdNCQFoCEdAj2qcVHnU2HV9lChoBkdAb0ttMPBi1GgHTRsBaAhHQI9qpuyeI2x1fZQoaAZHQG525wGW2PVoB0v6aAhHQI9skXWOIZZ1fZQoaAZHQHG1n2M85jpoB00gAWgIR0CPbMmqHXVcdX2UKGgGR0Bw464Vh1DCaAdNEAFoCEdAj2z/Ru0kW3V9lChoBkdAcDGqJdjXnWgHTQoBaAhHQI9t3DWK/Eh1fZQoaAZHQHMk2rjo6jpoB00hAWgIR0CPbmyZ8a4udX2UKGgGR0Bw1gAsCkoGaAdNQwFoCEdAj3Bt/OMVDnV9lChoBkdAch0O0LMLW2gHTUkBaAhHQI9yYsRQJol1fZQoaAZHQHDGbcCYCyRoB00iAWgIR0CPc4yO7xusdX2UKGgGR0BwH+npB5X2aAdNCwFoCEdAj3P8LSeAeHV9lChoBkdAcPDDeCTUzGgHTSMBaAhHQI904dfb9Ih1fZQoaAZHQHApyRr8BMloB00VAWgIR0CPdSxL0z0pdX2UKGgGR0Bvij7yhBZ7aAdNFQFoCEdAj3ezzVc2SHV9lChoBkdAcDrDL8rI52gHTS4BaAhHQI94L2criER1fZQoaAZHQG4TTMzMzM1oB00YAWgIR0CPem9yLhrFdX2UKGgGR0BxHe4qgAZLaAdNGgFoCEdAj3sz6zmfXnV9lChoBkdAcKqxu89Oh2gHS/JoCEdAj3tBs67ulXV9lChoBkdAcBU1uR9w32gHTREBaAhHQI98oXO4XoF1fZQoaAZHQG+257w8W9FoB01QAWgIR0CPfkxzJZGKdX2UKGgGR0Bsc/0h/y5JaAdL82gIR0CPfsVmBe5XdX2UKGgGR0Bw3ecMEzO5aAdNFAFoCEdAj37Abp/wzHV9lChoBkdAcgRsniNsFmgHTTUBaAhHQI9+9GoaUA11fZQoaAZHQHJw3bVSXMRoB00lAWgIR0CPfxSiM5wPdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}