{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f93a8edfa00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680656637007572198, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOhnTj8stVo/bjDEvqaWbz+XNNk/5oWcP1qIOT8XBke/meQ8P7xgUb9p7ak/HYY5v8K9+T7wvpc/4K9cvxQ4Bz7DXik/LmB3P88h/T62m6Y8ut6Kvj7ceb8kPF8/Y0SDvhFhQr+kxDI/rOyJPpnoMT/Yeks+Rzh+P8ihHr8lDtk+ZAC9PlnASz/7OYc/ynB+PjdJvr2yh6U/uyJTP3yKj75C+Tw/goaPP7nAiL9Yl9Q+9h8qPt37WD+T9P0+4ynJvLXwqz/6Rmq+HX9oPpFCBj8RYUK/pMQyP0iUbcA6L7i/GAz2PuUtLD9RIf+9jDonPw7sTD/Y/oY/Q1eRP+xFtL24N0g+eH5dv/THQz/mHAC/Q5EdP6+ZOz9HCq2/HsaaPgoW9j76/8K+7vf8PmZB8TxMeSY/M/ZXv8LTkD5o2qs+EWFCv6TEMj+s7Ik+megxPwnWsD6zaSo/gvvsvWmJPD81Jkw/vKuBP1gqPz9JdYa+G/MDP/VOa76fppc/n4RKu7wqDL22gx8/79OHvx7pAj4B3QU/xTTLvuxy/D7zNfs8Xh1aP+fDgL/Yvh8/+T3jPhFhQr+kxDI/rOyJPpnoMT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSQYm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtt4zvAAAAABMs+e/AAAAAFYPib0AAAAAz6r0PwAAAADjAgq+AAAAAA3n2T8AAAAApDW4vAAAAAALFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALPfGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA23CL0AAAAAdnMAwAAAAABUqsE9AAAAAIbB/z8AAAAA8ex4PQAAAADC1+o/AAAAAH6ff70AAAAAzejovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFpEE7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAg/wc+AAAAAJUg6b8AAAAAgN1UPQAAAADJCPA/AAAAACVEXT0AAAAAYIruPwAAAABpU5M9AAAAAFBL878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPDqu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpxpvQAAAAC/n+e/AAAAAFkswr0AAAAAL/rwPwAAAABPe7S9AAAAAH0k5D8AAAAALNS7PQAAAAA3q/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpUwAOrhiuMAWyUTegDjAF0lEdAq+9sOskpqnV9lChoBkdAnGbWxlg+hWgHTegDaAhHQKvypZV4oql1fZQoaAZHQJ4etIOH311oB03oA2gIR0Cr85Rq46OpdX2UKGgGR0CcabVf/m1ZaAdN6ANoCEdAq/UdO2y9mHV9lChoBkdAmnIj6JqIrWgHTegDaAhHQKv+e98qnWJ1fZQoaAZHQJfkv/R3NcJoB03oA2gIR0CsAZij1wo9dX2UKGgGR0CZ/IDmKZUlaAdN6ANoCEdArAJHpGFzuHV9lChoBkdAmscHHaN+9mgHTegDaAhHQKwDZvYODrZ1fZQoaAZHQJ9+LErGza9oB03oA2gIR0CsCnwlSjxkdX2UKGgGR0Cb1nHR1HOKaAdN6ANoCEdArA2K9wm3OXV9lChoBkdAnDrSlBQem2gHTegDaAhHQKwONb6guh91fZQoaAZHQJ0yAREnb7FoB03oA2gIR0CsD0+KjzqbdX2UKGgGR0CghUIakyk9aAdN6ANoCEdArBmEUCaJAXV9lChoBkdAoB13t8eCCmgHTegDaAhHQKwcyPJ7sv91fZQoaAZHQKCsnRv3rUtoB03oA2gIR0CsHWx28qWkdX2UKGgGR0ChC8Adfb9IaAdN6ANoCEdArB6DqyGBWnV9lChoBkdAnokXFUADJWgHTegDaAhHQKwlsR5C4SZ1fZQoaAZHQKEjkR3/xUhoB03oA2gIR0CsKMRDLKV6dX2UKGgGR0CfCanQ6ZH/aAdN6ANoCEdArCl2hmGucXV9lChoBkdAm8tJcophF2gHTegDaAhHQKwqniADq4Z1fZQoaAZHQJ54Gz+m3vxoB03oA2gIR0CsM1eso2GZdX2UKGgGR0CfKy876pHaaAdN6ANoCEdArDgJiTdLx3V9lChoBkdAnSHVWOp84WgHTegDaAhHQKw4uAn2Iwd1fZQoaAZHQJlYio0hvBJoB03oA2gIR0CsOcqSxJNCdX2UKGgGR0Cdi5RtxdY5aAdN6ANoCEdArEDt4NZvDXV9lChoBkdAnZ4xPwd8zGgHTegDaAhHQKxD/8ma6SV1fZQoaAZHQJ6b8HZ9NN9oB03oA2gIR0CsRLS4FzMidX2UKGgGR0Ce0+2EkB0ZaAdN6ANoCEdArEXJBsyi23V9lChoBkdAm9zdXxOLzmgHTegDaAhHQKxNYdYGMXJ1fZQoaAZHQJtOZo4+8oRoB03oA2gIR0CsUgRQBPsSdX2UKGgGR0Cc1nrqt5lfaAdN6ANoCEdArFMKsfaHsXV9lChoBkdAngIfVVghKWgHTegDaAhHQKxUwpEQXhx1fZQoaAZHQJ9E/H2h7E5oB03oA2gIR0CsXDI68xsVdX2UKGgGR0CeP2hl18suaAdN6ANoCEdArF9eF+NLlHV9lChoBkdAnqSZJ04io2gHTegDaAhHQKxgDOwgTyt1fZQoaAZHQJ6YZGFzuF9oB03oA2gIR0CsYSg4n4O+dX2UKGgGR0CelqXlr/KhaAdN6ANoCEdArGh+7YkE93V9lChoBkdAl0FkBsANomgHTegDaAhHQKxsXi8WbgF1fZQoaAZHQJt8CkcjqwBoB03oA2gIR0CsbU78m8dxdX2UKGgGR0CZ3Yhf0EowaAdN6ANoCEdArG8EvGp++nV9lChoBkdAnUQ0/0NBnmgHTegDaAhHQKx34psGgSR1fZQoaAZHQJgdC1JDmbNoB03oA2gIR0CseuiGetjkdX2UKGgGR0CcA4euV5bAaAdN6ANoCEdArHuW4NI9T3V9lChoBkdAmC2tWQwK0GgHTegDaAhHQKx8vS/CZWt1fZQoaAZHQJwU9IkJKJ5oB03oA2gIR0Csg7VEmY0EdX2UKGgGR0CcorbkwN9ZaAdN6ANoCEdArIbS5d4VynV9lChoBkdAmiABl+Vkc2gHTegDaAhHQKyHdaoMrmR1fZQoaAZHQJ4d/eFcpspoB03oA2gIR0CsiM0MgEEDdX2UKGgGR0CfQCb+cYqHaAdN6ANoCEdArJLrJOnEVHV9lChoBkdAnM5vvnbItGgHTegDaAhHQKyV8UypJf91fZQoaAZHQJ9jaL1mJ3xoB03oA2gIR0Cslp3HzYmLdX2UKGgGR0CeoP0XP7emaAdN6ANoCEdArJetOZb6g3V9lChoBkdAmxAGD6Fds2gHTegDaAhHQKyexkH2RJV1fZQoaAZHQJkZo7ZFoctoB03oA2gIR0CsodE/bCaadX2UKGgGR0CZSVQWN3nqaAdN6ANoCEdArKJ7IFNcnnV9lChoBkdAmJW57ojfN2gHTegDaAhHQKyjh3/xUed1fZQoaAZHQJgAdkQPI4loB03oA2gIR0CsrNTpxFRYdX2UKGgGR0CZ7TPLgXMyaAdN6ANoCEdArLEVjAi3X3V9lChoBkdAmvoS8rZrYWgHTegDaAhHQKyx0B0ZFXt1fZQoaAZHQJsF4igTRIBoB03oA2gIR0CssulyR0U5dX2UKGgGR0CchnMaS9uhaAdN6ANoCEdArLn8OoYNzHV9lChoBkdAm236oESuhmgHTegDaAhHQKy9CNWEK3N1fZQoaAZHQJvlXbtZ3cJoB03oA2gIR0Csva4EnssydX2UKGgGR0Cbn7UFB6a9aAdN6ANoCEdArL7BJoTPB3V9lChoBkdAnOlvDtPYWmgHTegDaAhHQKzGTIwM6R11fZQoaAZHQJ6k2WhRIjJoB03oA2gIR0Csyt0JfICEdX2UKGgGR0CfHVBClabGaAdN6ANoCEdArMvrNliBoXV9lChoBkdAnvEuyiVSoGgHTegDaAhHQKzNmFj/dZd1fZQoaAZHQJ0brxb0OExoB03oA2gIR0Cs1MqGDcubdX2UKGgGR0CdImP8AJb/aAdN6ANoCEdArNfsYdhiLHV9lChoBkdAnpAcynDR+mgHTegDaAhHQKzYmpc5bQl1fZQoaAZHQKByEDr7fpFoB03oA2gIR0Cs2cT3IuGsdX2UKGgGR0CfESOmR/3GaAdN6ANoCEdArODsSwnpjnV9lChoBkdAnmPN3KSxJWgHTegDaAhHQKzlARjjJdV1fZQoaAZHQJ4bvXJ5miBoB03oA2gIR0Cs5fditq59dX2UKGgGR0CdW9+aBqbjaAdN6ANoCEdArOetke6qbXV9lChoBkdAmbF/07KaHGgHTegDaAhHQKzwZftx+8Z1fZQoaAZHQJj8wV2zOX5oB03oA2gIR0Cs83vUKArhdX2UKGgGR0CcQvQ6IWP+aAdN6ANoCEdArPQnz+WGAXV9lChoBkdAnCW8HbAUL2gHTegDaAhHQKz1QR2bG3p1fZQoaAZHQJqIcyylenhoB03oA2gIR0Cs/G9k8RthdX2UKGgGR0CYycI2wV0taAdN6ANoCEdArP+GFvhqCnV9lChoBkdAmzgFDF6zFGgHTegDaAhHQK0ASOe8PFx1fZQoaAZHQJwRn779AHFoB03oA2gIR0CtAeAtOEdvdX2UKGgGR0CZD3+kxh2GaAdN6ANoCEdArQu0tbs4UHV9lChoBkdAmGaM052hZmgHTegDaAhHQK0O0k8ifQN1fZQoaAZHQJhKZOZb6gxoB03oA2gIR0CtD30A1ejVdX2UKGgGR0CXz0F/hESeaAdN6ANoCEdArRCXtdAxBXV9lChoBkdAmW5jQiRnvmgHTegDaAhHQK0X97tzCDV1fZQoaAZHQJcz5NqQA+9oB03oA2gIR0CtGyPKMefadX2UKGgGR0CZHPvH93r2aAdN6ANoCEdArRvSnzg/DHV9lChoBkdAmXwxwl0HQmgHTegDaAhHQK0c7KZlWfd1fZQoaAZHQJnJTovBacJoB03oA2gIR0CtJweyzHCGdX2UKGgGR0CcsdolUp/gaAdN6ANoCEdArSqFsUIsy3V9lChoBkdAmkju1Bt1p2gHTegDaAhHQK0rNX7Lt/p1fZQoaAZHQJ0lYlVtGd9oB03oA2gIR0CtLFCf6Gg0dX2UKGgGR0CdRxMlTm4iaAdN6ANoCEdArTNOZXuE3HV9lChoBkdAn0SFj/dZaGgHTegDaAhHQK02fEIgNgB1fZQoaAZHQJ1b0AyVObloB03oA2gIR0CtNyUGmk30dX2UKGgGR0Cewi2oegctaAdN6ANoCEdArTg30f5k9XVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}