--- license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - generated_from_trainer metrics: - wer model-index: - name: hubert-rinnna-jp-jdrtsp-fw07sp-clean results: [] --- # hubert-rinnna-jp-jdrtsp-fw07sp-clean This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2393 - Wer: 0.2187 - Cer: 0.1210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 8.6058 | 1.0 | 164 | 6.2883 | 0.9743 | 0.9861 | | 4.6616 | 2.0 | 328 | 4.0451 | 0.9743 | 0.9861 | | 3.8526 | 3.0 | 492 | 3.5417 | 0.9743 | 0.9861 | | 3.2384 | 4.0 | 656 | 3.0505 | 0.9743 | 0.9861 | | 2.7948 | 5.0 | 820 | 2.6706 | 0.9743 | 0.9861 | | 2.549 | 6.0 | 984 | 2.4268 | 0.9743 | 0.9861 | | 2.1808 | 7.0 | 1148 | 1.8554 | 0.9743 | 0.9861 | | 1.6069 | 8.0 | 1312 | 1.2551 | 0.6822 | 0.6231 | | 1.1916 | 9.0 | 1476 | 0.7985 | 0.3679 | 0.2242 | | 0.9977 | 10.0 | 1640 | 0.6234 | 0.3118 | 0.1827 | | 0.836 | 11.0 | 1804 | 0.5103 | 0.2801 | 0.1643 | | 0.7515 | 12.0 | 1968 | 0.4305 | 0.2663 | 0.1549 | | 0.7045 | 13.0 | 2132 | 0.3688 | 0.2489 | 0.1413 | | 0.6533 | 14.0 | 2296 | 0.3258 | 0.2399 | 0.1340 | | 0.5906 | 15.0 | 2460 | 0.2941 | 0.2318 | 0.1288 | | 0.5746 | 16.0 | 2624 | 0.2748 | 0.2300 | 0.1278 | | 0.5169 | 17.0 | 2788 | 0.2573 | 0.2240 | 0.1242 | | 0.5511 | 18.0 | 2952 | 0.2479 | 0.2211 | 0.1228 | | 0.5318 | 19.0 | 3116 | 0.2410 | 0.2186 | 0.1210 | | 0.5174 | 20.0 | 3280 | 0.2393 | 0.2187 | 0.1210 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3